Advertisements
Advertisements
प्रश्न
If y = (log x)2 the `dy/dx` = ______.
उत्तर
If y = (log x)2 the `dy/dx` = `bbunderline((2 log x) 1/x = (2 log x)/x)`.
Explanation:
y = (log x)2
∴ `"dy"/("d"x) = 2log x."d"/("d"x)(log x)`
= `(2.logx)/x`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `"x"^("e"^"x")`
Find `"dy"/"dx"`if, y = (2x + 5)x
Find `"dy"/"dx"`if, y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`
Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`
Find `dy/dx`if, y = `(x)^x + (a^x)`.
Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`
Fill in the Blank
If 0 = log(xy) + a, then `"dy"/"dx" = (-"y")/square`
Fill in the blank.
If x = t log t and y = tt, then `"dy"/"dx"` = ____
Fill in the blank.
If y = y = [log (x)]2 then `("d"^2"y")/"dx"^2 =` _____.
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
Solve the following:
If y = [log(log(logx))]2, find `"dy"/"dx"`
Find `"dy"/"dx"` if y = `sqrt(((3"x" - 4)^3)/(("x + 1")^4("x + 2")))`
Choose the correct alternative:
If y = (x )x + (10)x, then `("d"y)/("d"x)` = ?
If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______
If u = 5x and v = log x, then `("du")/("dv")` is ______
If u = ex and v = loge x, then `("du")/("dv")` is ______
State whether the following statement is True or False:
If y = log(log x), then `("d"y)/("d"x)` = logx
State whether the following statement is True or False:
If y = 4x, then `("d"y)/("d"x)` = 4x
Find `(dy)/(dx)`, if xy = yx
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
Find `("d"y)/("d"x)`, if y = `x^(x^x)`
If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`
If y = x . log x then `dy/dx` = ______.
FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`
Find `dy / dx` if, `y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`