English

If y = (log x)2 the dydx = ______. - Mathematics and Statistics

Advertisements
Advertisements

Question

If y = (log x)2 the `dy/dx` = ______.

Fill in the Blanks

Solution

If y = (log x)2 the `dy/dx` = `bbunderline((2  log  x) 1/x = (2  log  x)/x)`.

Explanation:

y = (log x)2

∴ `"dy"/("d"x) = 2log x."d"/("d"x)(log x)`

= `(2.logx)/x`

shaalaa.com
The Concept of Derivative - Derivatives of Logarithmic Functions
  Is there an error in this question or solution?
2022-2023 (March) Official

RELATED QUESTIONS

Find `"dy"/"dx"`if, y = `"e"^("x"^"x")`


Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`


Find `dy/dx`if, y = `(x)^x + (a^x)`.


Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`


Fill in the blank.

If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____


State whether the following is True or False:

If y = log x, then `"dy"/"dx" = 1/"x"`


State whether the following is True or False:

If y = e2, then `"dy"/"dx" = 2"e"`


Find `"dy"/"dx"` if y = `sqrt(((3"x" - 4)^3)/(("x + 1")^4("x + 2")))`


Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`


If xy = 2x – y, then `("d"y)/("d"x)` = ______


If u = ex and v = loge x, then `("du")/("dv")` is ______


Find `("d"y)/("d"x)`, if y = [log(log(logx))]2 


Find `("d"y)/("d"x)`, if xy = log(xy)


Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)


Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx


Find `("d"y)/("d"x)`, if y = x(x) + 20(x) 

Solution: Let y = x(x) + 20(x) 

Let u = `x^square` and v = `square^x`

∴ y = u + v

Diff. w.r.to x, we get

`("d"y)/("d"x) = square/("d"x) + "dv"/square`   .....(i)

Now, u = xx

Taking log on both sides, we get

log u = x × log x

Diff. w.r.to x,

`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`

∴ `"du"/("d"x)` = u(1 + log x)

∴ `"du"/("d"x) = x^x (1 +  square)`    .....(ii)

Now, v = 20x

Diff.w.r.to x, we get

`"dv"/("d"x") = 20^square*log(20)`     .....(iii)

Substituting equations (ii) and (iii) in equation (i), we get

`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)


`int 1/(4x^2 - 1) dx` = ______.


If y = x . log x then `dy/dx` = ______.


Find `dy/dx  "if",y=x^(e^x) `


Find `dy/dx, "if"  y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`


Find `dy/dx` if, y = `x^(e^x)`


Find `dy/dx` if, `y = x^(e^x)`


Find `dy/dx` if, `y = x^(e^x)`


Find `dy/(dx)  "if", y = x^(e^(x))` 


Find `dy/(dx)` if, `y = x^(e^x)`


Find `dy/(dx)` if, `x = e^(3t),  y = e^sqrtt`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×