English

If y = x . log x then dydx = ______. - Mathematics and Statistics

Advertisements
Advertisements

Question

If y = x . log x then `dy/dx` = ______.

Options

  • 1

  • `1/x`

  • log x

  • 1 + log x

MCQ
Fill in the Blanks

Solution

If y = x . log x then `dy/dx` = 1 + log x.

Explanation:

`dy/dx=x.d/dx(logx)+logx.d/dx(x)`

`= x.(1/x) + log x .(1)`

= 1 + log x

shaalaa.com
The Concept of Derivative - Derivatives of Logarithmic Functions
  Is there an error in this question or solution?
2022-2023 (March) Official

RELATED QUESTIONS

Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`


If y = log `("e"^"x"/"x"^2)`, then `"dy"/"dx" = ?` 


Fill in the Blank

If 0 = log(xy) + a, then `"dy"/"dx" =  (-"y")/square`


Fill in the blank.

If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____


State whether the following is True or False:

If y = e2, then `"dy"/"dx" = 2"e"`


Differentiate log (1 + x2) with respect to ax.


Choose the correct alternative:

If y = (x )x + (10)x, then `("d"y)/("d"x)` = ?


If u = ex and v = loge x, then `("du")/("dv")` is ______


Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)


If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt 


Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx


Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`


If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`


Find `("d"y)/("d"x)`, if y = x(x) + 20(x) 

Solution: Let y = x(x) + 20(x) 

Let u = `x^square` and v = `square^x`

∴ y = u + v

Diff. w.r.to x, we get

`("d"y)/("d"x) = square/("d"x) + "dv"/square`   .....(i)

Now, u = xx

Taking log on both sides, we get

log u = x × log x

Diff. w.r.to x,

`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`

∴ `"du"/("d"x)` = u(1 + log x)

∴ `"du"/("d"x) = x^x (1 +  square)`    .....(ii)

Now, v = 20x

Diff.w.r.to x, we get

`"dv"/("d"x") = 20^square*log(20)`     .....(iii)

Substituting equations (ii) and (iii) in equation (i), we get

`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)


Solve the following differential equations:

x2ydx – (x3 – y3)dy = 0


If y = (log x)2 the `dy/dx` = ______.


Find `dy/dx,"if"  y=x^x+(logx)^x`


Find `dy/dx` if, y = `x^(e^x)`


Find `dy/dx if, y =  x^(e^x)`


Find `dy/dx` if, `y = x^(e^x)`


Find `dy/dx` if, `y = x^(e^x)`


Find `dy/dx "if", y = x^(e^x)`


Find `dy/dx` if, `y = x^(e^x)`


Find `dy/(dx)  "if", y = x^(e^(x))` 


Find `dy/(dx)` if, `y = x^(e^x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×