Advertisements
Advertisements
Question
Solve the following differential equations:
x2ydx – (x3 – y3)dy = 0
Solution
x2ydx – (x3 – y3)dy = 0
∴ x2ydx = (x3 + y3 )dy
∴ `dy/dx = (x^2y)/(x^3 + y^3)` ...(i)
Put y = tx ...(ii)
Differentiating w.r.t x,
∴ `dy/dx = t + x dt/dx` ...(iii)
Substituting (iii) and (ii) in (i), we get
∴ `t + x dt/dx = (tx^3)/(x^3 + t^3x^3)`
∴ `t + x dt/dx = t/(1 + t^3)`
∴ `(x.dt)/dx = t/(1 + t^3) - t`
∴ `(x.dt)/dx = (t - t - t^4)/( 1 + t^3)`
∴ `(x.dt)/dx = (-t^4)/(1 + t^3)`
∴ `(1 + t^3)/t^4.dt = - dx/x`
Integrating on both sides. we get
`int (1 + t^3)/t^4 dt = - int 1/x dx`
∴ `int (1/t^4 + 1/t)dt = -int 1/x dx`
∴ `int t^-4dt + int 1/t dt = - int 1/x dx`
∴ `t^-3/(-3) + log |t|` = –log |x| + log |c1|
∴ `- 1/(3t^3) + log""|t|` = –log |x| + log |c1|
∴ `(-1)/(+3). 1/(y/x)^3 + log"|y/x|` = –log |x| + log |c1|
∴ `- x^3/(3y^3) + log"|y| - log"|x|` = –log |x| + log |c1|
∴ log |y| + log |c| = `x^3/(3y^3)`
Where [–log |c1| = log |c|]
∴ log |yc| = `x^3/(3y^3)`
This is the general solution.
APPEARS IN
RELATED QUESTIONS
Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`
Find `"dy"/"dx"`if, y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`
If y = log `("e"^"x"/"x"^2)`, then `"dy"/"dx" = ?`
Fill in the blank.
If x = t log t and y = tt, then `"dy"/"dx"` = ____
Fill in the blank.
If y = y = [log (x)]2 then `("d"^2"y")/"dx"^2 =` _____.
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
State whether the following is True or False:
The derivative of `log_ax`, where a is constant is `1/(x.loga)`.
State whether the following is True or False:
If y = e2, then `"dy"/"dx" = 2"e"`
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
If xy = 2x – y, then `("d"y)/("d"x)` = ______
If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______
State whether the following statement is True or False:
If y = log(log x), then `("d"y)/("d"x)` = logx
State whether the following statement is True or False:
If y = 4x, then `("d"y)/("d"x)` = 4x
Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)
If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt
Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
Find `("d"y)/("d"x)`, if y = `x^(x^x)`
If y = x . log x then `dy/dx` = ______.
If y = (log x)2 the `dy/dx` = ______.
Find `dy/dx if, y = x^(e^x)`
Find `dy / dx` if, `y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/dx "if", y = x^(e^x)`