Advertisements
Advertisements
Question
Fill in the blank.
If y = y = [log (x)]2 then `("d"^2"y")/"dx"^2 =` _____.
Solution
If y = y = [log (x)]2 then `("d"^2"y")/"dx"^2 =(2(1 − log x))/x^2 `.
Explanation:
y = (log x)2
On differentiating w.r.t. x, we get,
`dy/dx = 2 log x d/dx (log x)`
`dy/dx = 2 log x. 1/x`
`dy/dx = (2log x)/x`
Again differentiating w.r to x, we get,
`(d^2y)/(dx^2) = 2 d/dx ((log x)/x)`
`(d^2y)/(dx^2) = 2 ((x d/dx (log x) − log x d/dx x)/x^2)`
`(d^2y)/(dx^2) = 2 ((x × 1/x − log x × 1)/x^2)`
`(d^2y)/(dx^2) = (2(1 − log x))/x^2`
APPEARS IN
RELATED QUESTIONS
Find `"dy"/"dx"`if, y = (2x + 5)x
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
State whether the following is True or False:
The derivative of `log_ax`, where a is constant is `1/(x.loga)`.
State whether the following is True or False:
If y = log x, then `"dy"/"dx" = 1/"x"`
Solve the following:
If y = [log(log(logx))]2, find `"dy"/"dx"`
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
Differentiate log (1 + x2) with respect to ax.
If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______
If u = 5x and v = log x, then `("du")/("dv")` is ______
Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`
Solve the following differential equations:
x2ydx – (x3 – y3)dy = 0
`int 1/(4x^2 - 1) dx` = ______.
Find `dy/dx "if", y = x^(e^x)`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy / dx` if, `y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`