Advertisements
Advertisements
Question
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
Solution
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =` axy
Explanation:
y = `"e"^"ax"`
Differentiating both sides w.r.t. x, we get
`"dy"/"dx" = "e"^"ax" * "d"/"dx" ("ax")`
`= "e"^"ax" * ("a")`
`= "a" * "e"^"ax"`
∴ `"dy"/"dx"` = ay
∴ `"x" "dy"/"dx" = "axy"`
APPEARS IN
RELATED QUESTIONS
Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`
Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`
State whether the following is True or False:
The derivative of `log_ax`, where a is constant is `1/(x.loga)`.
The derivative of ax is ax log a.
Solve the following:
If y = [log(log(logx))]2, find `"dy"/"dx"`
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
If u = 5x and v = log x, then `("du")/("dv")` is ______
Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)
Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
Find `("d"y)/("d"x)`, if y = `x^(x^x)`
If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`
Solve the following differential equations:
x2ydx – (x3 – y3)dy = 0
If y = x . log x then `dy/dx` = ______.
Find `dy/dx "if", y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/(dx) "if", y = x^(e^(x))`