Advertisements
Advertisements
प्रश्न
Fill in the blank.
If y = y = [log (x)]2 then `("d"^2"y")/"dx"^2 =` _____.
उत्तर
If y = y = [log (x)]2 then `("d"^2"y")/"dx"^2 =(2(1 − log x))/x^2 `.
Explanation:
y = (log x)2
On differentiating w.r.t. x, we get,
`dy/dx = 2 log x d/dx (log x)`
`dy/dx = 2 log x. 1/x`
`dy/dx = (2log x)/x`
Again differentiating w.r to x, we get,
`(d^2y)/(dx^2) = 2 d/dx ((log x)/x)`
`(d^2y)/(dx^2) = 2 ((x d/dx (log x) − log x d/dx x)/x^2)`
`(d^2y)/(dx^2) = 2 ((x × 1/x − log x × 1)/x^2)`
`(d^2y)/(dx^2) = (2(1 − log x))/x^2`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`
Find `"dy"/"dx"`if, y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`
Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`
If y = elogx then `dy/dx` = ?
Fill in the blank.
If x = t log t and y = tt, then `"dy"/"dx"` = ____
Differentiate log (1 + x2) with respect to ax.
If xy = 2x – y, then `("d"y)/("d"x)` = ______
If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______
State whether the following statement is True or False:
If y = 4x, then `("d"y)/("d"x)` = 4x
Find `(dy)/(dx)`, if xy = yx
Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`
`int 1/(4x^2 - 1) dx` = ______.
Find`dy/dx if, y = x^(e^x)`
Find `dy/dx , if y^x = e^(x+y)`
Find `dy/dx, "if" y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`
Find `dy/dx if, y = x^(e^x)`
Find `dy / dx` if, `y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/dx "if", y = x^(e^x)`
Find `dy/(dx)` if, `y = x^(e^x)`