Advertisements
Advertisements
प्रश्न
Find `(dy)/(dx)`, if xy = yx
उत्तर
Given xy = yx
Taking logarithm of both sides, we get
log xy = log yx
∴ y log x = x log y
Differentiating both sides w.r.t.x, we get
`d/(dx)(ylogx) = d/(dx)(xlogy)`
∴ `y.d/(dx)(logx) + d/(dx)(y) = x.d/(dx)(logy) + logy. d/(dx)(x)`
∴ `y. 1/x + logx.(dy)/(dx) = x. 1/y.(dy)/(dx) + logy.1`
∴ `(logx - x/y)(dy)/(dx) = (logy - y/x)`
∴ `((ylogx - x)/y) (dy)/(dx) = (xlogy - y)/x`
∴ `(dy)/(dx) = ((xlogy - y)/x) xx (y/(ylogx - x))`
∴ `(dy)/(dx) = y/x((xlogy - y)/(ylogx - x))`
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`
Find `"dy"/"dx"`if, y = `"x"^("e"^"x")`
Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`
Find `"dy"/"dx"`if, y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`
Fill in the Blank
If 0 = log(xy) + a, then `"dy"/"dx" = (-"y")/square`
Fill in the blank.
If y = y = [log (x)]2 then `("d"^2"y")/"dx"^2 =` _____.
State whether the following is True or False:
If y = e2, then `"dy"/"dx" = 2"e"`
The derivative of ax is ax log a.
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
If u = ex and v = loge x, then `("du")/("dv")` is ______
State whether the following statement is True or False:
If y = log(log x), then `("d"y)/("d"x)` = logx
Find `("d"y)/("d"x)`, if xy = log(xy)
Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)
Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`
Find `("d"y)/("d"x)`, if y = x(x) + 20(x)
Solution: Let y = x(x) + 20(x)
Let u = `x^square` and v = `square^x`
∴ y = u + v
Diff. w.r.to x, we get
`("d"y)/("d"x) = square/("d"x) + "dv"/square` .....(i)
Now, u = xx
Taking log on both sides, we get
log u = x × log x
Diff. w.r.to x,
`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`
∴ `"du"/("d"x)` = u(1 + log x)
∴ `"du"/("d"x) = x^x (1 + square)` .....(ii)
Now, v = 20x
Diff.w.r.to x, we get
`"dv"/("d"x") = 20^square*log(20)` .....(iii)
Substituting equations (ii) and (iii) in equation (i), we get
`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)
Solve the following differential equations:
x2ydx – (x3 – y3)dy = 0
If y = x . log x then `dy/dx` = ______.
Find `dy/dx, "if" y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy / dx` if, `y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/(dx) "if", y = x^(e^(x))`
Find `dy/(dx)` if, `y = x^(e^x)`