Advertisements
Advertisements
प्रश्न
If y = x . log x then `dy/dx` = ______.
विकल्प
1
`1/x`
log x
1 + log x
उत्तर
If y = x . log x then `dy/dx` = 1 + log x.
Explanation:
`dy/dx=x.d/dx(logx)+logx.d/dx(x)`
`= x.(1/x) + log x .(1)`
= 1 + log x
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `"e"^("x"^"x")`
Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`
Find `"dy"/"dx"`if, y = (2x + 5)x
Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`
Find `dy/dx`if, y = `(x)^x + (a^x)`.
If y = elogx then `dy/dx` = ?
If y = log `("e"^"x"/"x"^2)`, then `"dy"/"dx" = ?`
Fill in the Blank
If 0 = log(xy) + a, then `"dy"/"dx" = (-"y")/square`
State whether the following is True or False:
The derivative of `log_ax`, where a is constant is `1/(x.loga)`.
State whether the following is True or False:
If y = log x, then `"dy"/"dx" = 1/"x"`
Solve the following:
If y = [log(log(logx))]2, find `"dy"/"dx"`
Differentiate log (1 + x2) with respect to ax.
If xy = 2x – y, then `("d"y)/("d"x)` = ______
If u = 5x and v = log x, then `("du")/("dv")` is ______
If u = ex and v = loge x, then `("du")/("dv")` is ______
State whether the following statement is True or False:
If y = 4x, then `("d"y)/("d"x)` = 4x
Find `("d"y)/("d"x)`, if y = [log(log(logx))]2
Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
Find `("d"y)/("d"x)`, if y = `x^(x^x)`
Find `dy/dx "if",y=x^(e^x) `
FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx, "if" y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`