Advertisements
Advertisements
प्रश्न
If y = log `("e"^"x"/"x"^2)`, then `"dy"/"dx" = ?`
विकल्प
`(2 - "x")/"x"`
`("x" - 2)/"x"`
`("e - x")/"ex"`
`("x - e")/"ex"`
उत्तर
`bb(("x" - 2)/"x")`
Explanation:
y = log `("e"^"x"/"x"^2)`
= log (ex) − log (x2)
= x log e − log x2
y = x − log x2 ...(∵ log e = 1)
Differentiating w.r.t. 'x', we get
`"dy"/"dx"= 1 - 1/("x"^2)."d"/"dx" ("x"^2)`
= `1 - (2"x")/("x"^2)`
= `1 - 2/"x"`
= `("x"- 2)/"x"`
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`
Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`
If y = elogx then `dy/dx` = ?
Fill in the Blank
If 0 = log(xy) + a, then `"dy"/"dx" = (-"y")/square`
If y = x log x, then `(d^2y)/dx^2`= _____.
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
State whether the following is True or False:
If y = log x, then `"dy"/"dx" = 1/"x"`
The derivative of ax is ax log a.
Find `"dy"/"dx"` if y = `sqrt(((3"x" - 4)^3)/(("x + 1")^4("x + 2")))`
Differentiate log (1 + x2) with respect to ax.
If xy = 2x – y, then `("d"y)/("d"x)` = ______
State whether the following statement is True or False:
If y = log(log x), then `("d"y)/("d"x)` = logx
State whether the following statement is True or False:
If y = 4x, then `("d"y)/("d"x)` = 4x
Find `(dy)/(dx)`, if xy = yx
If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt
Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`
Solve the following differential equations:
x2ydx – (x3 – y3)dy = 0
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx, "if" y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`
Find `dy/dx if, y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/(dx)` if, `y = x^(e^x)`