मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

If y = log exx(exx2), then dydxdydx=? - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If y = log `("e"^"x"/"x"^2)`, then `"dy"/"dx" = ?` 

पर्याय

  • `(2 - "x")/"x"`

  • `("x" - 2)/"x"`

  • `("e - x")/"ex"`

  • `("x - e")/"ex"`

MCQ

उत्तर

`bb(("x" - 2)/"x")`

Explanation:

y = log `("e"^"x"/"x"^2)`

= log (ex) − log (x2)

= x log e − log x2

y = x − log x2   ...(∵ log e = 1)

Differentiating w.r.t. 'x', we get

`"dy"/"dx"= 1 - 1/("x"^2)."d"/"dx" ("x"^2)`

= `1 - (2"x")/("x"^2)`

= `1 - 2/"x"`

= `("x"- 2)/"x"`

shaalaa.com
The Concept of Derivative - Derivatives of Logarithmic Functions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Differentiation - MISCELLANEOUS EXERCISE - 3 [पृष्ठ ९९]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Differentiation
MISCELLANEOUS EXERCISE - 3 | Q I] 6) | पृष्ठ ९९

संबंधित प्रश्‍न

Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`


Find `"dy"/"dx"`if, y = `"x"^("e"^"x")`


Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`


Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`


If y = elogx then `dy/dx` = ?


Fill in the blank.

If y = y = [log (x)]2  then `("d"^2"y")/"dx"^2 =` _____.


Fill in the blank.

If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____


State whether the following is True or False:

If y = log x, then `"dy"/"dx" = 1/"x"`


Solve the following:

If y = [log(log(logx))]2, find `"dy"/"dx"`


Differentiate log (1 + x2) with respect to ax.


If xy = 2x – y, then `("d"y)/("d"x)` = ______


If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______


If u = 5x and v = log x, then `("du")/("dv")` is ______


State whether the following statement is True or False:

If y = log(log x), then `("d"y)/("d"x)` = logx


Find `("d"y)/("d"x)`, if y = [log(log(logx))]2 


Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)


If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt 


Find `("d"y)/("d"x)`, if y = `x^(x^x)`


Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`


Find `("d"y)/("d"x)`, if y = x(x) + 20(x) 

Solution: Let y = x(x) + 20(x) 

Let u = `x^square` and v = `square^x`

∴ y = u + v

Diff. w.r.to x, we get

`("d"y)/("d"x) = square/("d"x) + "dv"/square`   .....(i)

Now, u = xx

Taking log on both sides, we get

log u = x × log x

Diff. w.r.to x,

`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`

∴ `"du"/("d"x)` = u(1 + log x)

∴ `"du"/("d"x) = x^x (1 +  square)`    .....(ii)

Now, v = 20x

Diff.w.r.to x, we get

`"dv"/("d"x") = 20^square*log(20)`     .....(iii)

Substituting equations (ii) and (iii) in equation (i), we get

`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)


`int 1/(4x^2 - 1) dx` = ______.


Find `dy/dx  "if",y=x^(e^x) `


Find `dy/dx, "if"  y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`


Find `dy/dx` if, `y = x^(e^x)`


Find `dy/(dx)  "if", y = x^(e^(x))` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×