Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`
उत्तर
y = `(1 + 1/"x")^"x"`
Taking logarithm of both sides, we get
log y = `log(1 + 1/"x")^"x"`
∴ log y = x `log(1 + 1/"x")`
Differentiating both sides w.r.t.x, we get
`1/"y" * "dy"/"dx" = "x" * "d"/"dx" log(1 + 1/"x") + log(1 + 1/"x") * "d"/"dx" ("x")`
∴ `1/"y" * "dy"/"dx" = "x" * 1/(1 + 1/"x") * "d"/"dx" (1 + 1/"x") + log (1 + 1/"x") * (1)`
∴ `1/"y" * "dy"/"dx" = "x"/(("x" + 1)/"x") * (0 - 1/"x"^2) + log (1 + 1/"x")`
∴ `1/"y" * "dy"/"dx" = "x"^2/("x + 1") * ((-1)/"x"^2) + log (1 + 1/"x")`
∴ `1/"y" * "dy"/"dx" = (- 1)/("x + 1") + log (1 + 1/"x")`
∴ `"dy"/"dx" = "y"[(-1)/("x + 1") + log (1 + 1/"x")]`
∴ `"dy"/"dx" = (1 + 1/"x")^"x" * [log (1 + 1/"x") - 1/("x + 1")]`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`
Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`
If y = log `("e"^"x"/"x"^2)`, then `"dy"/"dx" = ?`
If y = x log x, then `(d^2y)/dx^2`= _____.
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
State whether the following is True or False:
The derivative of `log_ax`, where a is constant is `1/(x.loga)`.
The derivative of ax is ax log a.
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
If xy = 2x – y, then `("d"y)/("d"x)` = ______
State whether the following statement is True or False:
If y = log(log x), then `("d"y)/("d"x)` = logx
State whether the following statement is True or False:
If y = 4x, then `("d"y)/("d"x)` = 4x
Find `(dy)/(dx)`, if xy = yx
Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)
Find`dy/dx if, y = x^(e^x)`
Find `dy/dx "if",y=x^(e^x) `
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`