Advertisements
Advertisements
प्रश्न
State whether the following is True or False:
The derivative of `log_ax`, where a is constant is `1/(x.loga)`.
पर्याय
True
False
उत्तर
This statement is True.
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`
Find `dy/dx`if, y = `(x)^x + (a^x)`.
Fill in the Blank
If 0 = log(xy) + a, then `"dy"/"dx" = (-"y")/square`
Fill in the blank.
If x = t log t and y = tt, then `"dy"/"dx"` = ____
Fill in the blank.
If y = y = [log (x)]2 then `("d"^2"y")/"dx"^2 =` _____.
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
Solve the following:
If y = [log(log(logx))]2, find `"dy"/"dx"`
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
Choose the correct alternative:
If y = (x )x + (10)x, then `("d"y)/("d"x)` = ?
If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______
If u = ex and v = loge x, then `("du")/("dv")` is ______
Find `("d"y)/("d"x)`, if xy = log(xy)
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
Find `("d"y)/("d"x)`, if y = `x^(x^x)`
Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`
Solve the following differential equations:
x2ydx – (x3 – y3)dy = 0
If y = (log x)2 the `dy/dx` = ______.
Find `dy/dx "if",y=x^(e^x) `
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx, "if" y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`
Find `dy/dx if, y = x^(e^x)`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx "if", y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/(dx) "if", y = x^(e^(x))`
Find `dy/(dx)` if, `x = e^(3t), y = e^sqrtt`.