Advertisements
Advertisements
प्रश्न
Solve the following:
If y = [log(log(logx))]2, find `"dy"/"dx"`
उत्तर
y = [log(log(logx))]2
Differentiating both sides w.r.t. x, we get
`"dy"/"dx" = "d"/"dx" [log(log(log "x"))]^2`
`= 2[log(log(log "x"))] xx "d"/"dx" [log(log(log "x"))]`
`= 2[log(log(log "x"))] xx 1/(log(log "x")) xx "d"/"dx" [log(log "x")]`
`= 2[log(log(log "x"))] xx 1/(log(log "x")) xx 1/(log "x") xx "d"/"dx" (log "x")`
`= 2[log(log(log "x"))] xx 1/(log(log "x")) xx 1/(log "x") xx 1/"x"`
∴ `"dy"/"dx" = (2[log(log(log "x"))])/("x"(log "x")(log (log "x")))`
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`
Find `"dy"/"dx"`if, y = `"e"^("x"^"x")`
Find `"dy"/"dx"`if, y = (2x + 5)x
Find `dy/dx`if, y = `(x)^x + (a^x)`.
If y = elogx then `dy/dx` = ?
If y = x log x, then `(d^2y)/dx^2`= _____.
Fill in the blank.
If y = y = [log (x)]2 then `("d"^2"y")/"dx"^2 =` _____.
State whether the following is True or False:
The derivative of `log_ax`, where a is constant is `1/(x.loga)`.
The derivative of ax is ax log a.
If xy = 2x – y, then `("d"y)/("d"x)` = ______
If u = ex and v = loge x, then `("du")/("dv")` is ______
Find `(dy)/(dx)`, if xy = yx
Find `("d"y)/("d"x)`, if y = `x^(x^x)`
Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`
Find `("d"y)/("d"x)`, if y = x(x) + 20(x)
Solution: Let y = x(x) + 20(x)
Let u = `x^square` and v = `square^x`
∴ y = u + v
Diff. w.r.to x, we get
`("d"y)/("d"x) = square/("d"x) + "dv"/square` .....(i)
Now, u = xx
Taking log on both sides, we get
log u = x × log x
Diff. w.r.to x,
`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`
∴ `"du"/("d"x)` = u(1 + log x)
∴ `"du"/("d"x) = x^x (1 + square)` .....(ii)
Now, v = 20x
Diff.w.r.to x, we get
`"dv"/("d"x") = 20^square*log(20)` .....(iii)
Substituting equations (ii) and (iii) in equation (i), we get
`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)
Find `dy/dx if, y = x^(e^x)`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/dx "if", y = x^(e^x)`