Advertisements
Advertisements
प्रश्न
Find `("d"y)/("d"x)`, if y = x(x) + 20(x)
Solution: Let y = x(x) + 20(x)
Let u = `x^square` and v = `square^x`
∴ y = u + v
Diff. w.r.to x, we get
`("d"y)/("d"x) = square/("d"x) + "dv"/square` .....(i)
Now, u = xx
Taking log on both sides, we get
log u = x × log x
Diff. w.r.to x,
`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`
∴ `"du"/("d"x)` = u(1 + log x)
∴ `"du"/("d"x) = x^x (1 + square)` .....(ii)
Now, v = 20x
Diff.w.r.to x, we get
`"dv"/("d"x") = 20^square*log(20)` .....(iii)
Substituting equations (ii) and (iii) in equation (i), we get
`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)
उत्तर
Let y = x(x) + 20(x)
Let u = `x^x` and v = `20^x`
∴ y = u + v
Diff. w.r.to x, we get
`("d"y)/("d"x) = "du"/("d"x) + "dv"/("d"x)` .....(i)
Now, u = xx
Taking log on both sides, we get
log u = x × log x
Diff. w.r.to x,
`1/"u"*"du"/("d"x) = x xx 1/x + log x xx 1`
∴ `"du"/("d"x)` = u(1 + log x)
∴ `"du"/("d"x) = x^x (1 + log x)` .....(ii)
Now, v = 20x
Diff.w.r.to x, we get
`"dv"/("d"x") = 20^x*log(20)` .....(iii)
Substituting equations (ii) and (iii) in equation (i), we get
`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `"e"^("x"^"x")`
Find `"dy"/"dx"`if, y = (2x + 5)x
Find `"dy"/"dx"`if, y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`
Find `dy/dx`if, y = `(x)^x + (a^x)`.
Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`
If y = log `("e"^"x"/"x"^2)`, then `"dy"/"dx" = ?`
Fill in the Blank
If 0 = log(xy) + a, then `"dy"/"dx" = (-"y")/square`
State whether the following is True or False:
If y = e2, then `"dy"/"dx" = 2"e"`
If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______
Find `(dy)/(dx)`, if xy = yx
Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`
`int 1/(4x^2 - 1) dx` = ______.
If y = (log x)2 the `dy/dx` = ______.
Find `dy/dx "if",y=x^(e^x) `
FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`
Find `dy/dx "if", y = x^(e^x)`
Find `dy/dx if, y = x^(e^x)`
Find `dy/dx "if", y = x^(e^x)`