मराठी

SCERT Maharashtra solutions for Mathematics and Statistics (Commerce) [English] 12 Standard HSC chapter 1.3 - Differentiation [Latest edition]

Advertisements

Chapters

SCERT Maharashtra solutions for Mathematics and Statistics (Commerce) [English] 12 Standard HSC chapter 1.3 - Differentiation - Shaalaa.com
Advertisements

Solutions for Chapter 1.3: Differentiation

Below listed, you can find solutions for Chapter 1.3 of Maharashtra State Board SCERT Maharashtra for Mathematics and Statistics (Commerce) [English] 12 Standard HSC.


Q.1Q.2Q.3Q.4Q.5Q.6
Q.1

SCERT Maharashtra solutions for Mathematics and Statistics (Commerce) [English] 12 Standard HSC 1.3 Differentiation Q.1

MCQ [1 Mark]

Q.1 | Q 1

If y = `1/sqrt(3x^2 - 2x - 1)`, then `("d"y)/("d"x)` = ?

  • `(-2)/3 (3x - 2) (3x^2 - 2x - 1)^((-3)/2)`

  • `(-3)/2 (3x - 2) (3x^2 - 2x - 1)^((-3)/2)`

  • `(3x - 1) (3x^2 - 2x - 1)^((-3)/2)`

  • `-(3x - 1) (3x^2 - 2x - 1)^((-3)/2)`

Q.1 | Q 2

Choose the correct alternative:

If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?

  • `5/3 (6x + 8) (3x^2 + 8x - 6)^(2/3)`

  • `(-5)/3 (6x + 8) (3x^2 + 8x - 6)^(2/3)`

  • `3/5 (3x + 4) (3x^2 + 8x - 6)^(2/3)`

  • `(-3)/5 (3x + 4) (3x^2 + 8x - 6)^(2/3)`

Q.1 | Q 3

Choose the correct alternative:

What is the rate of change of demand (x) of a commodity with respect to its price (y) if y = 10 + x + 25x3.

  • `10/(1 + 75x^2)` 

  • `1/(1 + 75x^2)` 

  • 1 + 75x2

  • `(-1)/(1 + 75x^2)` 

Q.1 | Q 4

Choose the correct alternative:

What is the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(3x + 7)/(2x^2 + 5)`

  • `(2x^2 + 5)^2/((-6x^2 - 38x + 15))`

  • `(2x^2 + 5)^2/((-6x^2 - 28x + 15))`

  • `(2x^2 + 5)^2/((6x^2 - 28x + 15))`

  • `(2x^2 + 5)^2/((6x^2 - 38x + 15))`

Q.1 | Q 5

Choose the correct alternative:

If y = `x^(sqrt(x))`, then `("d"y)/("d"x)` = ?

  • `y/(2sqrt(x))(log x + 2)`

  • `y/sqrt(x)(log x + 2)`

  • `y/(2sqrt(x))(log x - 2)`

  • `y/sqrt(x)(log x - 2)`

Q.1 | Q 6

Choose the correct alternative:

If y = (x )x + (10)x, then `("d"y)/("d"x)` = ?

  • xx(1 – log x) + 10xlog10

  • xx(1 + log x) – 10xlog10 

  • x(1 + log x) + 10xlog10 

  • xx(1 + log x) + 10xlog10 

Q.1 | Q 7

Choose the correct alternative:

If xm. yn = `("x" + "y")^(("m" + "n"))`, then `("dy")/("dx")` = ?

  • `"y"/"x"`

  • `(-"y")/"x"`

  • `"x"/"y"`

  • `(-"x")/"y"`

Q.1 | Q 8

If xy = 2x – y, then `("d"y)/("d"x)` = ______

  • `(xlog2 - y)/(xlog2x)`

  • `(xlog2 + y)/(xlog2x)`

  • `(xlog2 + x)/(ylog2x)`

  • `(ylog2 - x)/(xlog2x)`

Q.1 | Q 9

Choose the correct alternative:

If x = 2am, y = 2am2, where m be the parameter, then `("d"y)/("d"x)` = ? 

  • 2m

  • – 2m

  • – am

  • am

Q.1 | Q 10

If x = `"a"("t" - 1/"t")`, y = `"a"("t" + 1/"t")`, where t be the parameter, then `("d"y)/("d"x)` = ?

  • `x/y`

  • `(-x)/y`

  • `y/x`

  • `(-y)/x`

Q.1 | Q 11

Choose the correct alternative:

If x = at2, y = 2at, then `("d"^2y)/("d"x^2)` = ?

  • `1/("at"^3)`

  • `(-1)/(2"at"^3)`

  • `(-1)/("at"^2)`

  • `1/("at"^2)`

Q.2

SCERT Maharashtra solutions for Mathematics and Statistics (Commerce) [English] 12 Standard HSC 1.3 Differentiation Q.2

Fill in the blanks: [1 Mark]

Q.2 | Q 1

If y = (5x3 – 4x2 – 8x)9, then `("d"y)/("d"x)` is ______

Q.2 | Q 2

If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______

Q.2 | Q 3

The rate of change of demand (x) of a commodity with respect to its price (y) is ______ if y = 5 + x2e–x + 2x

Q.2 | Q 4

The rate of change of demand (x) of a commodity with respect to its price (y) is ______ if y = xe–x + 7

Q.2 | Q 5

If y = x10, then `("d"y)/("d"x)` is ______

Q.2 | Q 6

If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______

Q.2 | Q 7

If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x)` is ______

Q.2 | Q 8

If u = 5x and v = log x, then `("du")/("dv")` is ______

Q.2 | Q 9

If u = ex and v = loge x, then `("du")/("dv")` is ______

Q.2 | Q 10

If y = x2, then `("d"^2y)/("d"x^2)` is ______

Q.3

SCERT Maharashtra solutions for Mathematics and Statistics (Commerce) [English] 12 Standard HSC 1.3 Differentiation Q.3

[1 Mark]

Q.3 | Q 1

State whether the following statement is True or False:

If y = log(log x), then `("d"y)/("d"x)` = logx

  • True

  • False

Q.3 | Q 2

State whether the following statement is True or False:

If y = 10x + 1, then `("d"y)/("d"x)` = 10x.log10

  • True

  • False

Q.3 | Q 3

State whether the following statement is True or False:

If y = x2, then the rate of change of demand (x) of a commodity with respect to its price (y) is `1/(2x)`

  • True

  • False

Q.3 | Q 4

State whether the following statement is True or False:

If y = 7x + 1, then the rate of change of demand (x) of a commodity with respect to its price (y) is 7

  • True

  • False

Q.3 | Q 5

State whether the following statement is True or False:

If y = ex, then `("d"y)/("d"x)` = ex 

  • True

  • False

Q.3 | Q 6

State whether the following statement is True or False:

If y = 4x, then `("d"y)/("d"x)` = 4x  

  • True

  • False

Q.3 | Q 7

State whether the following statement is True or False:

If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt("a"))`

  • True

  • False

Q.3 | Q 8

State whether the following statement is True or False:

If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a

  • True

  • False

Q.3 | Q 9

State whether the following statement is True or False:

If x = 2at, y = 2a, where t is parameter, then `("d"y)/("d"x) = 1/"t"`

  • True

  • False

Q.3 | Q 10

State whether the following statement is True or False:

If x = 5m, y = m, where m is parameter, then `("d"y)/("d"x) = 1/5`

  • True

  • False

Q.3 | Q 11

State whether the following statement is True or False:

If y = ex, then `("d"^2y)/("d"x^2)` = ex 

  • True

  • False

Q.4

SCERT Maharashtra solutions for Mathematics and Statistics (Commerce) [English] 12 Standard HSC 1.3 Differentiation Q.4

Solve the following: [3 Marks]

Q.4 | Q 1

Find `("d"y)/("d"x)`, if y = [log(log(logx))]2 

Q.4 | Q 2

Find `("d"y)/("d"x)`, if y = (6x3 – 3x2 – 9x)10 

Q.4 | Q 3

Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`

Q.4 | Q 4

Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 5 + x2e–x + 2x

Q.4 | Q 5

Find `(dy)/(dx)`, if xy = yx 

Q.4 | Q 6

Find `("d"y)/("d"x)`, if xy = log(xy)

Q.4 | Q 7

Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)

Q.4 | Q 8

If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt 

Q.4 | Q 9

Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`

Q.5

SCERT Maharashtra solutions for Mathematics and Statistics (Commerce) [English] 12 Standard HSC 1.3 Differentiation Q.5

Solve the following : [4 Marks]

Q.5 | Q 1

Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx

Q.5 | Q 2

Find `("d"y)/("d"x)`, if y = `root(5)((3x^2 + 8x + 5)^4`

Q.5 | Q 3

Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x 

Q.5 | Q 4

Find rate of change of demand (x) of a commodity with respect to its price (y) if y = `(3x + 7)/(2x^2 + 5)`

Q.5 | Q 5

Find `("d"y)/("d"x)`, if y = `x^(x^x)`

Q.5 | Q 6

Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`

Q.5 | Q 7

Solve the following:

If `"x"^5 * "y"^7 = ("x + y")^12` then show that, `"dy"/"dx" = "y"/"x"`

Q.5 | Q 8

If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`

Q.5 | Q 9

If x = `(4"t")/(1 + "t"^2)`, y = `3((1 - "t"^2)/(1 + "t"^2))`, then show that `("d"y)/("d"x) = (-9x)/(4y)` 

Q.5 | Q 10

If x2 + 6xy + y2 = 10, then show that `("d"^2y)/("d"x^2) = 80/(3x + y)^3`

Q.6

SCERT Maharashtra solutions for Mathematics and Statistics (Commerce) [English] 12 Standard HSC 1.3 Differentiation Q.6

Activity: [4 Marks]

Q.6 | Q 1

y = (6x4 – 5x3 + 2x + 3)6, find `("d"y)/("d"x)`

Solution: Given,

y = (6x4 – 5x3 + 2x + 3)6 

Let u = `[6x^4 - 5x^3 + square + 3]`

∴ y = `"u"^square`

∴ `("d"y)/"du"` = 6u6–1

∴ `("d"y)/"du"` = 6(  )5 

and `"du"/("d"x) = 24x^3 - 15(square) + 2`

By chain rule,

`("d"y)/("d"x) = ("d"y)/square xx square/("d"x)`

∴ `("d"y)/("d"x) = 6(6x^4 - 5x^3 + 2x + 3)^square xx (24x^3 - 15x^2 + square)`

Q.6 | Q 2

The rate of change of demand (x) of a commodity with respect to its price (y), if y = 20 + 15x + x3.

Solution: Let y = 20 + 15x + x3

Diff. w.r.to x, we get

`("d"y)/("d"x) = square + square  + square`

∴ `("d"y)/("d"x)` = 15 + 3x2

∴ By derivative of the inverse function,

`("d"x)/("d"y)  1/square, ("d"y)/("d"x) ≠ 0`

∴ Rate of change of demand with respect to price = `1/(square + square)`

Q.6 | Q 3

Find `("d"y)/("d"x)`, if y = x(x) + 20(x) 

Solution: Let y = x(x) + 20(x) 

Let u = `x^square` and v = `square^x`

∴ y = u + v

Diff. w.r.to x, we get

`("d"y)/("d"x) = square/("d"x) + "dv"/square`   .....(i)

Now, u = xx

Taking log on both sides, we get

log u = x × log x

Diff. w.r.to x,

`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`

∴ `"du"/("d"x)` = u(1 + log x)

∴ `"du"/("d"x) = x^x (1 +  square)`    .....(ii)

Now, v = 20x

Diff.w.r.to x, we get

`"dv"/("d"x") = 20^square*log(20)`     .....(iii)

Substituting equations (ii) and (iii) in equation (i), we get

`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)

Q.6 | Q 4

Find `("d"y)/("d"x)`, if x = em, y = `"e"^(sqrt("m"))`

Solution: Given, x = em and y = `"e"^(sqrt("m"))`

Now, y = `"e"^(sqrt("m"))`

Diff.w.r.to m,

`("d"y)/"dm" = "e"^(sqrt("m"))("d"square)/"dm"`

∴ `("d"y)/"dm" = "e"^(sqrt("m"))*1/(2sqrt("m"))`    .....(i)

Now, x = em

Diff.w.r.to m,

`("d"x)/"dm" = square`    .....(ii)

Now, `("d"y)/("d"x) = (("d"y)/("d"m))/square`

∴ `("d"y)/("d"x) = (("e"sqrt("m"))/square)/("e"^"m")`

∴  `("d"y)/("d"x) = ("e"^(sqrt("m")))/(2sqrt("m")*"e"^("m")`

Solutions for 1.3: Differentiation

Q.1Q.2Q.3Q.4Q.5Q.6
SCERT Maharashtra solutions for Mathematics and Statistics (Commerce) [English] 12 Standard HSC chapter 1.3 - Differentiation - Shaalaa.com

SCERT Maharashtra solutions for Mathematics and Statistics (Commerce) [English] 12 Standard HSC chapter 1.3 - Differentiation

Shaalaa.com has the Maharashtra State Board Mathematics Mathematics and Statistics (Commerce) [English] 12 Standard HSC Maharashtra State Board solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. SCERT Maharashtra solutions for Mathematics Mathematics and Statistics (Commerce) [English] 12 Standard HSC Maharashtra State Board 1.3 (Differentiation) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.

Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. SCERT Maharashtra textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.

Concepts covered in Mathematics and Statistics (Commerce) [English] 12 Standard HSC chapter 1.3 Differentiation are Derivatives of Composite Functions - Chain Rule, Derivatives of Inverse Functions, Derivatives of Logarithmic Functions, Derivatives of Implicit Functions, Derivatives of Parametric Functions, Second Order Derivative.

Using SCERT Maharashtra Mathematics and Statistics (Commerce) [English] 12 Standard HSC solutions Differentiation exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in SCERT Maharashtra Solutions are essential questions that can be asked in the final exam. Maximum Maharashtra State Board Mathematics and Statistics (Commerce) [English] 12 Standard HSC students prefer SCERT Maharashtra Textbook Solutions to score more in exams.

Get the free view of Chapter 1.3, Differentiation Mathematics and Statistics (Commerce) [English] 12 Standard HSC additional questions for Mathematics Mathematics and Statistics (Commerce) [English] 12 Standard HSC Maharashtra State Board, and you can use Shaalaa.com to keep it handy for your exam preparation.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×