Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
What is the rate of change of demand (x) of a commodity with respect to its price (y) if y = 10 + x + 25x3.
पर्याय
`10/(1 + 75x^2)`
`1/(1 + 75x^2)`
1 + 75x2
`(-1)/(1 + 75x^2)`
उत्तर
`1/(1 + 75x^2)`
APPEARS IN
संबंधित प्रश्न
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f-1(y) in the following: y = `root(3)(x - 2)`
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following:
y = log(2x – 1)
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = 2x + 3
Find the derivative of the inverse function of the following : y = x2 + log x
Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = ex + 3x + 2
Using derivative, prove that: tan –1x + cot–1x = `pi/(2)`
Using derivative, prove that: sec–1x + cosec–1x = `pi/(2)` ...[for |x| ≥ 1]
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 18x + log(x - 4).
Find the marginal demand of a commodity where demand is x and price is y.
y = `"x"*"e"^-"x" + 7`
Find the marginal demand of a commodity where demand is x and price is y.
y = `(5"x" + 9)/(2"x" - 10)`
If y = `"x"^3 + 3"xy"^2 + 3"x"^2"y"` Find `"dy"/"dx"`
If `"x"^3 + "y"^2 + "xy" = 7` Find `"dy"/"dx"`
If g is the inverse of f and f'(x) = `1/(1 + x^4)` then g'(x) = ______
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 5 + x2e–x + 2x
The rate of change of demand (x) of a commodity with respect to its price (y), if y = 20 + 15x + x3.
Solution: Let y = 20 + 15x + x3
Diff. w.r.to x, we get
`("d"y)/("d"x) = square + square + square`
∴ `("d"y)/("d"x)` = 15 + 3x2
∴ By derivative of the inverse function,
`("d"x)/("d"y) 1/square, ("d"y)/("d"x) ≠ 0`
∴ Rate of change of demand with respect to price = `1/(square + square)`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2
Find `dy/dx`, if y = `sec^-1((1 + x^2)/(1 - x^2))`.
If y = `sin^-1((2tanx)/(1 + tan^2x))`, find `dy/dx`.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2.