Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
What is the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(3x + 7)/(2x^2 + 5)`
पर्याय
`(2x^2 + 5)^2/((-6x^2 - 38x + 15))`
`(2x^2 + 5)^2/((-6x^2 - 28x + 15))`
`(2x^2 + 5)^2/((6x^2 - 28x + 15))`
`(2x^2 + 5)^2/((6x^2 - 38x + 15))`
उत्तर
`(2x^2 + 5)^2/((-6x^2 - 28x + 15))`
APPEARS IN
संबंधित प्रश्न
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following:
y = `sqrt(x)`
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = ex – 3
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = `log_2(x/2)`
Find the derivative of the inverse function of the following : y = x2·ex
Find the derivative of the inverse function of the following : y = x2 + log x
Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = ex + 3x + 2
Choose the correct option from the given alternatives :
If g is the inverse of function f and f'(x) = `(1)/(1 + x)`, then the value of g'(x) is equal to :
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 18x + log(x - 4).
State whether the following is True or False:
If f′ is the derivative of f, then the derivative of the inverse of f is the inverse of f′.
If y = `"x"^3 + 3"xy"^2 + 3"x"^2"y"` Find `"dy"/"dx"`
If `"x"^3"y"^3 = "x"^2 - "y"^2`, Find `"dy"/"dx"`
Find the derivative of the inverse of function y = 2x3 – 6x and calculate its value at x = −2
Choose the correct alternative:
What is the rate of change of demand (x) of a commodity with respect to its price (y) if y = 10 + x + 25x3.
State whether the following statement is True or False:
If y = 10x + 1, then `("d"y)/("d"x)` = 10x.log10
State whether the following statement is True or False:
If y = x2, then the rate of change of demand (x) of a commodity with respect to its price (y) is `1/(2x)`
If `int (dx)/(4x^2 - 1)` = A log `((2x - 1)/(2x + 1))` + c, then A = ______.
The I.F. of differential equation `dy/dx+y/x=x^2-3 "is" log x.`
Find `dy/dx`, if y = `sec^-1((1 + x^2)/(1 - x^2))`.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if `y=12+10x+25x^2`