Advertisements
Advertisements
प्रश्न
State whether the following statement is True or False:
If y = ex, then `("d"^2y)/("d"x^2)` = ex
पर्याय
True
False
उत्तर
True
APPEARS IN
संबंधित प्रश्न
Solve : `"dy"/"dx" = 1 - "xy" + "y" - "x"`
Find `"dy"/"dx"` if `sqrt(x) + sqrt(y) = sqrt(a)`
Find `"dy"/"dx"` if, y = log(ax2 + bx + c)
`d/dx(10^x) = x*10^(x - 1)`
Differentiate `"e"^("4x" + 5)` with respect to 104x.
If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost
Choose the correct alternative:
If y = `x^(sqrt(x))`, then `("d"y)/("d"x)` = ?
State whether the following statement is True or False:
If y = ex, then `("d"y)/("d"x)` = ex
State whether the following statement is True or False:
If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a
Given f(x) = `1/(x - 1)`. Find the points of discontinuity of the composite function y = f[f(x)]
Differentiate the function from over no 15 to 20 sin (x2 + 5)
Let f(x) = x | x | and g(x) = sin x
Statement I gof is differentiable at x = 0 and its derivative is continuous at that point.
Statement II gof is twice differentiable at x = 0.
Find `dy/dx` if, y = `e^(5 x^2 - 2x + 4)`
lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:
`dy/dx = dy/(du) xx (du)/dx`
Hence, find `d/dx[log(x^5 + 4)]`.
If y = `tan^-1((6x - 7)/(6 + 7x))`, then `dy/dx` = ______.
Find `dy/dx` if, `y = e^(5x^2 - 2x+4)`
Find `(dy) / (dx)` if, `y = e ^ (5x^2 - 2x + 4)`
If `y = root{5}{(3x^2 + 8x + 5)^4}, "find" dy/dx`.
If y = `root{5}{(3x^2 + 8x + 5)^4)`, find `(dy)/(dx)`