मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

State whether the following statement is True or False: If y = ex, then d2ydx2 = ex - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

State whether the following statement is True or False:

If y = ex, then `("d"^2y)/("d"x^2)` = ex 

पर्याय

  • True

  • False

MCQ
चूक किंवा बरोबर

उत्तर

True

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1.3: Differentiation - Q.3

संबंधित प्रश्‍न

Solve : `"dy"/"dx" = 1 - "xy" + "y" - "x"`


Find `"dy"/"dx"` if `sqrt(x) + sqrt(y) = sqrt(a)`


Find `"dy"/"dx"` if, y = log(ax2 + bx + c) 


`d/dx(10^x) = x*10^(x - 1)`


Differentiate `"e"^("4x" + 5)` with respect to 104x.


If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost


Choose the correct alternative:

If y = `x^(sqrt(x))`, then `("d"y)/("d"x)` = ?


State whether the following statement is True or False:

If y = ex, then `("d"y)/("d"x)` = ex 


State whether the following statement is True or False:

If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a


Given f(x) = `1/(x - 1)`. Find the points of discontinuity of the composite function y = f[f(x)]


Differentiate the function from over no 15 to 20 sin (x2 + 5)


Let f(x) = x | x | and g(x) = sin x

Statement I gof is differentiable at x = 0 and its derivative is continuous at that point.

Statement II gof is twice differentiable at x = 0.


Find `dy/dx` if, y = `e^(5 x^2 - 2x + 4)`


lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:

`dy/dx = dy/(du) xx (du)/dx`

Hence, find `d/dx[log(x^5 + 4)]`.


If y = `tan^-1((6x - 7)/(6 + 7x))`, then `dy/dx` = ______.


Find `dy/dx` if, `y = e^(5x^2 - 2x+4)`


Find `(dy) / (dx)` if, `y = e ^ (5x^2 - 2x + 4)`


If `y = root{5}{(3x^2 + 8x + 5)^4}, "find"  dy/dx`.


If y = `root{5}{(3x^2 + 8x + 5)^4)`, find `(dy)/(dx)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×