Advertisements
Advertisements
प्रश्न
Differentiate `"e"^("4x" + 5)` with respect to 104x.
उत्तर
Let u = `"e"^(("4x" + 5))` and v = 104x.
u = `"e"^(("4x" + 5))`
Differentiating both sides w.r.t.x, we get
`"du"/"dx" = "e"^(("4x" + 5)) * "d"/"dx" (4"x" + 5)`
`= "e"^(("4x" + 5)) * (4 + 0)`
∴ `"du"/"dx" = 4 * "e"^(("4x" + 5)) *`
v = 104x
Differentiating both sides w.r.t.x, we get
`"dv"/"dx" = 10^"4x" * log 10 * "d"/"dx" ("4x")`
∴ `"dv"/"dx" = 10^"4x" * (log 10) (4)`
∴ `"du"/"dv" = ("du"/"dx")/("dv"/"dx") = (4 * "e"^(("4x" + 5)))/(10^"4x" * (log 10)(4))`
∴ `"du"/"dv" = ("e"^(("4x" + 5)))/(10^"4x" * (log 10)`
APPEARS IN
संबंधित प्रश्न
If y = log (cos ex) then find `"dy"/"dx".`
Find `"dy"/"dx"` if, y = log(ax2 + bx + c)
If y = 2x2 + 22 + a2, then `"dy"/"dx" = ?`
If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`
The derivative of f(x) = ax, where a is constant is x.ax-1.
State whether the following is True or False:
The derivative of polynomial is polynomial.
If sin−1(x3 + y3) = a then `("d"y)/("d"x)` = ______
If y = cos−1 [sin (4x)], find `("d"y)/("d"x)`
Suppose y = f(x) is a differentiable function of x on an interval I and y is one – one, onto and `("d"y)/("d"x)` ≠ 0 on I. Also if f–1(y) is differentiable on f(I), then `("d"x)/("d"y) = 1/(("d"y)/("d"x)), ("d"y)/("d"x)` ≠ 0
If y = `1/sqrt(3x^2 - 2x - 1)`, then `("d"y)/("d"x)` = ?
Choose the correct alternative:
If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?
If y = (5x3 – 4x2 – 8x)9, then `("d"y)/("d"x)` is ______
State whether the following statement is True or False:
If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a
If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.
`"d"/("d"x) [sin(1 - x^2)]^2` = ______.
If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.
lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:
`dy/dx = dy/(du) xx (du)/dx`
Hence, find `d/dx[log(x^5 + 4)]`.
Find `dy/dx` if, y = `e^(5x^2 -2x + 4)`
Solve the following.
If `y=root(5)((3x^2 + 8x + 5)^4)`, find `dy/dx`