मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

If sin−1(x3 + y3) = a then dydx = ______ - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If sin−1(x3 + y3) = a then `("d"y)/("d"x)` = ______

पर्याय

  • `(-x)/(cos"a")`

  • `(-x^2)/(y^2)`

  • `(y^2)/(x^2)`

  • `sin"a"/y`

MCQ
रिकाम्या जागा भरा

उत्तर

`(-x^2)/(y^2)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.1: Differentiation - MCQ

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If y = eax. cos bx, then prove that

`(d^2y)/(dx^2) - 2ady/dx + (a^2 + b^2)y` = 0


Solve : `"dy"/"dx" = 1 - "xy" + "y" - "x"`


Solve the following differential equation: 
x2 dy + (xy + y2) dx = 0, when x = 1 and y = 1


Find `"dy"/"dx"` if `sqrt(x) + sqrt(y) = sqrt(a)`


Find `"dy"/"dx"` if `xsqrt(x) + ysqrt(y) = asqrt(a)`


Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`


Find `"dy"/"dx"` if ex+y = cos(x – y)


Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`


Find the second order derivatives of the following : xx 


Find `"dy"/"dx"` if, y = (5x3 - 4x2 - 8x)9 


Find `"dy"/"dx"` if, y = log(10x4 + 5x3 - 3x2 + 2)


Find `"dy"/"dx"` if, y = log(ax2 + bx + c) 


Find `"dy"/"dx"` if, y = `"a"^((1 + log "x"))`


Find `"dy"/"dx"` if, y = `5^(("x" + log"x"))`


If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`


If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25 + 30x  – x2.


Find `"dy"/"dx"`, if y = xx.


Differentiate `"e"^("4x" + 5)` with respect to 104x.


If y = sec (tan−1x) then `("d"y)/("d"x)` at x = 1 is ______.


If f'(4) = 5, f(4) = 3, g'(6) = 7 and R(x) = g[3 + f(x)] then R'(4) = ______


If x = cos−1(t), y = `sqrt(1 - "t"^2)` then `("d"y)/("d"x)` = ______


If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x


Choose the correct alternative:

If y = `x^(sqrt(x))`, then `("d"y)/("d"x)` = ?


If y = x10, then `("d"y)/("d"x)` is ______


State whether the following statement is True or False:

If y = ex, then `("d"y)/("d"x)` = ex 


State whether the following statement is True or False:

If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a


State whether the following statement is True or False:

If y = ex, then `("d"^2y)/("d"x^2)` = ex 


Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`


Find `("d"y)/("d"x)`, if y = `root(5)((3x^2 + 8x + 5)^4`


If y = `2/(sqrt(a^2 - b^2))tan^-1[sqrt((a - b)/(a + b))  tan  x/2], "then" (d^2y)/dx^2|_{x = pi/2}` = ______ 


If u = x2 + y2 and x = s + 3t, y = 2s - t, then `(d^2u)/(ds^2)` = ______ 


If f(x) = `(x - 2)/(x + 2)`, then f(α x) = ______ 


Derivative of ex sin x w.r.t. e-x cos x is ______.


If y = (sin x2)2,  then `("d"y)/("d"x)` is equal to ______.


`"d"/("d"x) [sin(1 - x^2)]^2` = ______.


Given f(x) = `1/(x - 1)`. Find the points of discontinuity of the composite function y = f[f(x)]


If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)` 


Differentiate the function from over no 15 to 20 sin (x2 + 5)


y = sin (ax+ b)


y = `2sqrt(cotx^2)`


If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.


Let x(t) = `2sqrt(2) cost sqrt(sin2t)` and y(t) = `2sqrt(2) sint sqrt(sin2t), t ∈ (0, π/2)`. Then `(1 + (dy/dx)^2)/((d^2y)/(dx^2)` at t = `π/4` is equal to ______.


Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`


Solve the following:

If y = `root5 ((3x^2 + 8x + 5)^4 ,)  "find"  "dy"/ "dx"`


Find `"dy"/"dx"` if, `"y" = "e"^(5"x"^2 - 2"x" + 4)`


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


The differential equation of (x - a)2 + y2 = a2 is ______ 


Find `dy/dx` if ,

`x= e^(3t) , y = e^(4t+5)`


lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:

`dy/dx = dy/(du) xx (du)/dx`

Hence, find `d/dx[log(x^5 + 4)]`.


Find `dy/dx` if, y = `e^(5x^2-2x+4)`


If x = Φ(t) is a differentiable function of t, then prove that:

`int f(x)dx = int f[Φ(t)]*Φ^'(t)dt`

Hence, find `int(logx)^n/x dx`.


If y = `log((x + sqrt(x^2 + a^2))/(sqrt(x^2 + a^2) - x))`, find `dy/dx`.


If y = `tan^-1((6x - 7)/(6 + 7x))`, then `dy/dx` = ______.


If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that

`dy/dx = dy/(du) xx (du)/dx`

Hence find `dy/dx` if y = log(x2 + 5)


Find `dy/dx` if, y = `e^(5x^2 -2x + 4)`


Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`


Find `dy/dx` if, y = `e^(5x^2-2x+4)`


Solve the following:

If `y =root(5)((3x^2 + 8x + 5)^4), "find" dy/(dx)`


Find `dy/dx` if, `y=e^(5x^2-2x+4)`


Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`


Solve the following:

If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"` 


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`


If `y = root{5}{(3x^2 + 8x + 5)^4}, "find"  dy/dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×