Advertisements
Advertisements
प्रश्न
If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.
उत्तर
ax2 + 2hxy + by2 = 0
Differentiating w.r.t. 'x',
`2ax + 2h (x (dy)/(dx) + y.1) + 2by (dy)/(dx)` = 0
∴ `(2hx + 2by) (dy)/(dx) = - (2ax + 2hy)`
∴ `(dy)/(dx) = (-2(ax + hy))/(2(hx + by))`
∴ `(dy)/(dx) = (-(ax + hy))/((hx + by))` ......(1)
Now, ax2 + 2hxy + by2 = 0
⇒ ax2 + hxy + hxy + by2 = 0
⇒ x(ax + hy) + y(hx + by) = 0
⇒ x(ax + hy) = – y(hx + by)
⇒ `(ax ++ hy)/(hx + by) = (-y)/x` ......(2)
Substituting (2) in (1),
`(dy)/(dx) = - ((-y)/x) = y/x` ......(3)
Again, differentiating w.r.t., x,
`(d^2y)/(dx^2) = (x . (dy)/(dx) - y.1)/x^2`
= `(x . y/x - y)/x^2` ......[From (3)]
⇒ `(d^2y)/(dx^2) = (y - y)/x^2` = 0.
APPEARS IN
संबंधित प्रश्न
If y = log (cos ex) then find `"dy"/"dx".`
Find `"dy"/"dx"`If x3 + x2y + xy2 + y3 = 81
Find `"dy"/"dx"` if cos (xy) = x + y
Find the second order derivatives of the following : e4x. cos 5x
Find `"dy"/"dx"` if, y = `root(3)("a"^2 + "x"^2)`
Find `"dy"/"dx"` if, y = (5x3 - 4x2 - 8x)9
Find `"dy"/"dx"` if, y = log(log x)
Find `"dy"/"dx"` if, y = log(10x4 + 5x3 - 3x2 + 2)
Choose the correct alternative.
If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`
If sin−1(x3 + y3) = a then `("d"y)/("d"x)` = ______
If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x
State whether the following statement is True or False:
If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a
State whether the following statement is True or False:
If y = ex, then `("d"^2y)/("d"x^2)` = ex
If f(x) = |cos x|, find f'`((3pi)/4)`
y = sin (ax+ b)
y = `sec (tan sqrt(x))`
y = `2sqrt(cotx^2)`
If `d/dx` [f(x)] = ax+ b and f(0) = 0, then f(x) is equal to ______.
Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`
Find `"dy"/"dx"` if, `"y" = "e"^(5"x"^2 - 2"x" + 4)`
Find `dy/dx` if, y = `e^(5 x^2 - 2x + 4)`
If y = `root5((3x^2+8x+5)^4)`, find `dy/dx`
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
Solve the following:
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`