Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"` if cos (xy) = x + y
उत्तर
cos (xy) = x + y
Differentiating both sides w.r.t. x, we get
`-sin(xy)."d"/"dx"(xy) = 1 + "dy"/"dx"`
∴ `-sin(xy)[x"dy"/"dx" + y"d"/"dx"(x)] = 1 + "dy"/"dx"`
∴ `-sin(xy)[x"dy"/"dx" + y xx 1] = 1 + "dy"/"dx"`
∴ `-xsin(xy)"dy"/"dx" - ysin(xy) = 1 + "dy"/"dx"`
∴ `-"dy"/"dx" -sin(xy)"dy"/"dx" = 1 + ysin(xy)`
∴ `-[1 + x sin(xy)]"dy"/"dx" = 1 + ysin(xy)`
∴ `"dy"/"dx" = (-[1 + ysin (xy)])/(1 + x sin(xy)`.
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`If x3 + x2y + xy2 + y3 = 81
Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`
Find `"dy"/"dx"` if ex+y = cos(x – y)
Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`
Find `"dy"/"dx"` if, y = (5x3 - 4x2 - 8x)9
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
Find `"dy"/"dx"` if, y = `5^(("x" + log"x"))`
Choose the correct alternative.
If y = `sqrt("x" + 1/"x")`, then `"dy"/"dx" = ?`
If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`
The derivative of f(x) = ax, where a is constant is x.ax-1.
`d/dx(10^x) = x*10^(x - 1)`
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.
Find `"dy"/"dx"`, if y = xx.
If x = cos−1(t), y = `sqrt(1 - "t"^2)` then `("d"y)/("d"x)` = ______
If y = cos−1 [sin (4x)], find `("d"y)/("d"x)`
If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost
If y = (5x3 – 4x2 – 8x)9, then `("d"y)/("d"x)` is ______
If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______
If y = x2, then `("d"^2y)/("d"x^2)` is ______
State whether the following statement is True or False:
If y = ex, then `("d"^2y)/("d"x^2)` = ex
Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`
Find `("d"y)/("d"x)`, if y = `root(5)((3x^2 + 8x + 5)^4`
If f(x) = `(x - 2)/(x + 2)`, then f(α x) = ______
If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.
`"d"/("d"x) [sin(1 - x^2)]^2` = ______.
Differentiate `sqrt(tansqrt(x))` w.r.t. x
If x = a sec3θ and y = a tan3θ, find `("d"y)/("d"x)` at θ = `pi/3`
If f(x) = |cos x|, find f'`((3pi)/4)`
Differentiate the function from over no 15 to 20 sin (x2 + 5)
y = sin (ax+ b)
y = `sec (tan sqrt(x))`
y = `2sqrt(cotx^2)`
y = `cos sqrt(x)`
If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.
If y = 2x2 + a2 + 22 then `dy/dx` = ______.
If `d/dx` [f(x)] = ax+ b and f(0) = 0, then f(x) is equal to ______.
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
Solve the following:
If y = `root5 ((3x^2 + 8x + 5)^4 ,) "find" "dy"/ "dx"`
Solve the following:
If`y=root(5)((3x^2+8x+5)^4),"find" (dy)/dx`
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
The differential equation of (x - a)2 + y2 = a2 is ______
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:
`dy/dx = dy/(du) xx (du)/dx`
Hence, find `d/dx[log(x^5 + 4)]`.
Find `dy/dx` if, y = `e^(5x^2-2x+4)`
If x = Φ(t) is a differentiable function of t, then prove that:
`int f(x)dx = int f[Φ(t)]*Φ^'(t)dt`
Hence, find `int(logx)^n/x dx`.
If y = `log((x + sqrt(x^2 + a^2))/(sqrt(x^2 + a^2) - x))`, find `dy/dx`.
If y = `tan^-1((6x - 7)/(6 + 7x))`, then `dy/dx` = ______.
If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that
`dy/dx = dy/(du) xx (du)/dx`
Hence find `dy/dx` if y = log(x2 + 5)
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find `dy/dx` if, `y = e^(5x^2 - 2x +4)`
Solve the following:
If `y =root(5)((3x^2 + 8x + 5)^4), "find" dy/(dx)`
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`
Solve the following:
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`
Solve the following.
If `y=root(5)((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find `(dy) / (dx)` if, `y = e ^ (5x^2 - 2x + 4)`
If `y = root{5}{(3x^2 + 8x + 5)^4}, "find" dy/dx`.
Find `dy/dx` if, `y = e^(5x^2 - 2x + 4)`.