Advertisements
Advertisements
प्रश्न
Choose the correct alternative.
If y = `sqrt("x" + 1/"x")`, then `"dy"/"dx" = ?`
पर्याय
`("x"^2 - 1)/(2"x"^2sqrt("x"^2 + 1))`
`(1 - "x"^2)/(2"x"^2("x"^2 + 1))`
`("x"^2 - 1)/("2x"sqrt"x"sqrt("x"^2 + 1))`
`(1 - "x"^2)/("2x"sqrt"x"sqrt("x"^2 + 1))`
उत्तर
`("x"^2 - 1)/("2x"sqrt"x"sqrt("x"^2 + 1))`
Explanation:
y = `sqrt("x" + 1/"x")`
Differentiating both sides w.r.t.x, we get
`"dy"/"dx" = 1/(2sqrt("x" + 1/"x")) * "d"/"dx" ("x" + 1/"x")`
`= 1/(2sqrt(("x"^2 + 1)/"x")) * (1 - 1/"x"^2)`
`= sqrt"x"/(2sqrt("x"^2 + 1)) * (("x"^2 - 1)/"x"^2)`
`= ("x"^2 - 1)/("2x"sqrt"x"sqrt("x"^2 + 1))`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"` if `sqrt(x) + sqrt(y) = sqrt(a)`
Find `"dy"/"dx"` if ex+y = cos(x – y)
Find `"dy"/"dx"` if cos (xy) = x + y
Find the second order derivatives of the following : e2x . tan x
Find `"dy"/"dx"` if, y = `5^(("x" + log"x"))`
Choose the correct alternative:
If y = `x^(sqrt(x))`, then `("d"y)/("d"x)` = ?
If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______
If f(x) = `(x - 2)/(x + 2)`, then f(α x) = ______
If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.
If y = (sin x2)2, then `("d"y)/("d"x)` is equal to ______.
Differentiate the function from over no 15 to 20 sin (x2 + 5)
If `y = root5(3x^2 + 8x + 5)^4`, find `dy/dx`
Find `dy/dx` if ,
`x= e^(3t) , y = e^(4t+5)`
If x = Φ(t) is a differentiable function of t, then prove that:
`int f(x)dx = int f[Φ(t)]*Φ^'(t)dt`
Hence, find `int(logx)^n/x dx`.
If y = `sqrt((1 - x)/(1 + x))`, then `(1 - x^2) dy/dx + y` = ______.
Find `dy/dx` if, y = `e^(5x^2 -2x + 4)`
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
Find `dy/dx` if, `y = e^(5x^2 - 2x+4)`
If `y = (x + sqrt(a^2 + x^2))^m`, prove that `(a^2 + x^2)(d^2y)/(dx^2) + xdy/dx - m^2y = 0`