मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Find the second order derivatives of the following : e2x . tan x - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the second order derivatives of the following : e2x . tan x

बेरीज

उत्तर

Let y = e2x . tan x
Then `"dy"/"dx" = "d"/"dx"(e^(2x).tanx)`

= `e^(2x)."d"/"dx"(tanx) + tanx."d"/"dx"(e^(2x))`

= `e^(2x) xx sec^2x + tanx xx e^(2x)."d"/"dx"(2x)`

= e2x . sec2x + e2x . tanx × 2
= e2x (sec2x + 2tan x)
and
`(d^2y)/(dx^2) = "d"/"dx"[e^(2x)(sec^2x + 2tanx)]`

= `e^(2x)."d"/"dx"(sec^2x + 2tanx) + (sec^2x + 2tanx)"d"/"dx"(e^(2x))`

= `e^(2x)["d"/"dx"(secx)^2 + 2"d"/"dx"(tanx)] + (sec^2x + 2tanx) xx e^(2x)."d"/"dx"(2x)`

= `e^(2x)[2secx."d"/"dx"(secx) + 2sec^2x] + (sec^2x + 2tanx)e^(2x) xx 2`

= e2x(2 sec x . sec x tanx + 2sec2x) + 2e2x(sec2x + 2tanx)
= 2e2x(sec2x tanx + sec2x + sec2x + 2tanx)
= 2e2x[sec2x(tanx + 1) + 1 + tan2x + 2tanx]
= 2e2x[sec2x(1 + tanx) + (1 + tanx)2]
= 2e2x[(1 + tanx) (sec2x + 1 + tanx)]
= 2e2x[(1 + tanx) (1 + tan2x + 1 + tanx)]
= 2e2x(1 + tanx) (2 + tanx + tan2x).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Differentiation - Exercise 1.5 [पृष्ठ ६०]

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If y = eax. cos bx, then prove that

`(d^2y)/(dx^2) - 2ady/dx + (a^2 + b^2)y` = 0


Solve the following differential equation: 
x2 dy + (xy + y2) dx = 0, when x = 1 and y = 1


If y = log (cos ex) then find `"dy"/"dx".`


Find `"dy"/"dx"` if `sqrt(x) + sqrt(y) = sqrt(a)`


Find `"dy"/"dx"` if `xsqrt(x) + ysqrt(y) = asqrt(a)`


Find `"dy"/"dx"` if xey + yex = 1


Find `"dy"/"dx"` if cos (xy) = x + y


Find `"dy"/"dx"` if `e^(e^(x - y)) = x/y`


Find `"dy"/"dx"` if, y = `sqrt("x" + 1/"x")`


Find `"dy"/"dx"` if, y = (5x3 - 4x2 - 8x)9 


Find `"dy"/"dx"` if, y = log(ax2 + bx + c) 


Choose the correct alternative.

If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =


If y = 2x2 + 22 + a2, then `"dy"/"dx" = ?`


The derivative of f(x) = ax, where a is constant is x.ax-1.


If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`


Differentiate `"e"^("4x" + 5)` with respect to 104x.


If sin−1(x3 + y3) = a then `("d"y)/("d"x)` = ______


If y = cos−1 [sin (4x)], find `("d"y)/("d"x)`


If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x


If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost


If y = `1/sqrt(3x^2 - 2x - 1)`, then `("d"y)/("d"x)` = ?


Choose the correct alternative:

If y = `x^(sqrt(x))`, then `("d"y)/("d"x)` = ?


If y = (5x3 – 4x2 – 8x)9, then `("d"y)/("d"x)` is ______


State whether the following statement is True or False:

If y = ex, then `("d"y)/("d"x)` = ex 


State whether the following statement is True or False:

If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a


Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`


y = (6x4 – 5x3 + 2x + 3)6, find `("d"y)/("d"x)`

Solution: Given,

y = (6x4 – 5x3 + 2x + 3)6 

Let u = `[6x^4 - 5x^3 + square + 3]`

∴ y = `"u"^square`

∴ `("d"y)/"du"` = 6u6–1

∴ `("d"y)/"du"` = 6(  )5 

and `"du"/("d"x) = 24x^3 - 15(square) + 2`

By chain rule,

`("d"y)/("d"x) = ("d"y)/square xx square/("d"x)`

∴ `("d"y)/("d"x) = 6(6x^4 - 5x^3 + 2x + 3)^square xx (24x^3 - 15x^2 + square)`


If y = `2/(sqrt(a^2 - b^2))tan^-1[sqrt((a - b)/(a + b))  tan  x/2], "then" (d^2y)/dx^2|_{x = pi/2}` = ______ 


Given f(x) = `1/(x - 1)`. Find the points of discontinuity of the composite function y = f[f(x)]


If y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` and 0 < x < 1, then find `("d"y)/(dx)`


y = sin (ax+ b)


y = `2sqrt(cotx^2)`


Let f(x) = log x + x3 and let g(x) be the inverse of f(x), then |64g"(1)| is equal to ______.


Let x(t) = `2sqrt(2) cost sqrt(sin2t)` and y(t) = `2sqrt(2) sint sqrt(sin2t), t ∈ (0, π/2)`. Then `(1 + (dy/dx)^2)/((d^2y)/(dx^2)` at t = `π/4` is equal to ______.


If y = 2x2 + a2 + 22 then `dy/dx` = ______.


Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`


Find `"dy"/"dx"` if, `"y" = "e"^(5"x"^2 - 2"x" + 4)`


The differential equation of (x - a)2 + y2 = a2 is ______ 


Find `dy/dx` if, y = `e^(5 x^2 - 2x + 4)`


Find `dy/dx` if ,

`x= e^(3t) , y = e^(4t+5)`


If f(x) = `sqrt(7*g(x) - 3)`, g(3) = 4 and g'(3) = 5, find f'(3).


Find `dy/dx` if, y = `e^(5x^2-2x+4)`


Solve the following:

If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`


If y = `log((x + sqrt(x^2 + a^2))/(sqrt(x^2 + a^2) - x))`, find `dy/dx`.


If y = `tan^-1((6x - 7)/(6 + 7x))`, then `dy/dx` = ______.


If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that

`dy/dx = dy/(du) xx (du)/dx`

Hence find `dy/dx` if y = log(x2 + 5)


Find `dy/dx` if, y = `e^(5x^2 -2x + 4)`


Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`


Find `dy/dx` if, y = `e^(5x^2-2x+4)`


If y = `root5((3x^2+8x+5)^4)`, find `dy/dx`


Solve the following:

If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"` 


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`


Find `dy/dx` if, `y = e^(5x^2 - 2x+4)`


Solve the following.

If `y=root(5)((3x^2 + 8x + 5)^4)`, find `dy/dx`


If `y = root{5}{(3x^2 + 8x + 5)^4}, "find"  dy/dx`.


If y = `root{5}{(3x^2 + 8x + 5)^4)`, find `(dy)/(dx)`


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/(dx)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×