मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Find dydxdydx if xx+yy=aa - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find `"dy"/"dx"` if `xsqrt(x) + ysqrt(y) = asqrt(a)`

बेरीज

उत्तर

`xsqrt(x) + ysqrt(y) = asqrt(a)`

∴ `x^(3/2) + y^(3/2) = a^(3/2)`
Differentiating both sides w.r.t. x, we get
`(3)/(2).x^(1/2) + (3)/(2).y^(1/2)"dy"/"dx"` = 0

∴ `(3)/(2).y^(1/2)"dy"/"dx" = -(3)/(2)x^(1/2)`

∴ `"dy"/"dx" = (-x^(1/2))/(y^(1/2)`

= `-sqrt(x/y).`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Differentiation - Exercise 1.3 [पृष्ठ ४०]

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If y = eax. cos bx, then prove that

`(d^2y)/(dx^2) - 2ady/dx + (a^2 + b^2)y` = 0


if `y = tan^2(log x^3)`, find `(dy)/(dx)`


Find `"dy"/"dx"` if `sqrt(x) + sqrt(y) = sqrt(a)`


Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`


Find `"dy"/"dx"` if ex+y = cos(x – y)


Find `"dy"/"dx"` if `e^(e^(x - y)) = x/y`


Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`


Find the second order derivatives of the following : e4x. cos 5x


Find `"dy"/"dx"` if, y = (5x3 - 4x2 - 8x)9 


Find `"dy"/"dx"` if, y = log(log x)


Find `"dy"/"dx"` if, y = `"a"^((1 + log "x"))`


Choose the correct alternative.

If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =


If y = 2x2 + 22 + a2, then `"dy"/"dx" = ?`


If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`


The derivative of f(x) = ax, where a is constant is x.ax-1.


Solve the following:

If y = (6x3 - 3x2 - 9x)10, find `"dy"/"dx"` 


If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25 + 30x  – x2.


Differentiate `"e"^("4x" + 5)` with respect to 104x.


If f'(4) = 5, f(4) = 3, g'(6) = 7 and R(x) = g[3 + f(x)] then R'(4) = ______


If sin−1(x3 + y3) = a then `("d"y)/("d"x)` = ______


If x = cos−1(t), y = `sqrt(1 - "t"^2)` then `("d"y)/("d"x)` = ______


Suppose y = f(x) is a differentiable function of x on an interval I and y is one – one, onto and `("d"y)/("d"x)` ≠ 0 on I. Also if f–1(y) is differentiable on f(I), then `("d"x)/("d"y) = 1/(("d"y)/("d"x)), ("d"y)/("d"x)` ≠ 0


If y = (5x3 – 4x2 – 8x)9, then `("d"y)/("d"x)` is ______


If y = x10, then `("d"y)/("d"x)` is ______


State whether the following statement is True or False:

If y = ex, then `("d"y)/("d"x)` = ex 


State whether the following statement is True or False:

If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a


State whether the following statement is True or False:

If y = ex, then `("d"^2y)/("d"x^2)` = ex 


Find `("d"y)/("d"x)`, if y = (6x3 – 3x2 – 9x)10 


Find `("d"y)/("d"x)`, if y = `root(5)((3x^2 + 8x + 5)^4`


If y = `2/(sqrt(a^2 - b^2))tan^-1[sqrt((a - b)/(a + b))  tan  x/2], "then" (d^2y)/dx^2|_{x = pi/2}` = ______ 


If u = x2 + y2 and x = s + 3t, y = 2s - t, then `(d^2u)/(ds^2)` = ______ 


`"d"/("d"x) [sin(1 - x^2)]^2` = ______.


If ex + ey = ex+y , prove that `("d"y)/("d"x) = -"e"^(y - x)`


If f(x) = |cos x – sinx|, find `"f'"(pi/6)`


If y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))`, then `"dy"/"dx"` is equal to ______.


If y = log (cos ex), then `"dy"/"dx"` is:


y = cos (sin x)


y = `2sqrt(cotx^2)`


y = `cos sqrt(x)`


Let x(t) = `2sqrt(2) cost sqrt(sin2t)` and y(t) = `2sqrt(2) sint sqrt(sin2t), t ∈ (0, π/2)`. Then `(1 + (dy/dx)^2)/((d^2y)/(dx^2)` at t = `π/4` is equal to ______.


Let f(x) = x | x | and g(x) = sin x

Statement I gof is differentiable at x = 0 and its derivative is continuous at that point.

Statement II gof is twice differentiable at x = 0.


Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


The differential equation of (x - a)2 + y2 = a2 is ______ 


Find the rate of change of demand (x) of acommodity with respect to its price (y) if

`y = 12 + 10x + 25x^2`


Find `dy/dx` if ,

`x= e^(3t) , y = e^(4t+5)`


If f(x) = `sqrt(7*g(x) - 3)`, g(3) = 4 and g'(3) = 5, find f'(3).


Find `dy/dx` if, y = `e^(5x^2-2x+4)`


If y = `sqrt((1 - x)/(1 + x))`, then `(1 - x^2) dy/dx + y` = ______.


If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that

`dy/dx = dy/(du) xx (du)/dx`

Hence find `dy/dx` if y = log(x2 + 5)


Find `dy/dx` if, y = `e^(5x^2 -2x + 4)`


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


Find `dy/dx` if, y = `e^(5x^2-2x+4)`


If y = `root5((3x^2+8x+5)^4)`, find `dy/dx`


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`


If y = `root{5}{(3x^2 + 8x + 5)^4)`, find `(dy)/(dx)`


If `y = (x + sqrt(a^2 + x^2))^m`, prove that `(a^2 + x^2)(d^2y)/(dx^2) + xdy/dx - m^2y = 0`


Find `dy/dx` if, `y = e^(5x^2 - 2x +  4)`.


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/(dx)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×