Advertisements
Advertisements
प्रश्न
Suppose y = f(x) is a differentiable function of x on an interval I and y is one – one, onto and `("d"y)/("d"x)` ≠ 0 on I. Also if f–1(y) is differentiable on f(I), then `("d"x)/("d"y) = 1/(("d"y)/("d"x)), ("d"y)/("d"x)` ≠ 0
उत्तर
‘y’ is a differentiable function of ‘x’.
Let there be a small increment δx in the value of ‘x’.
Correspondingly, there should be a small increment δy in the value of ‘y’.
As δx → 0, δy → 0
Consider, `(deltax)/(deltay) xx (deltay)/(deltax)` = 1
∴ `(deltax)/(deltay) = 1/((deltay)/(deltax)), (deltay)/(deltax)` ≠ 0
Taking `lim_(deltax -> 0)` on both sides, we get
`lim_(deltax -> 0)((deltax)/(deltay)) = 1/(lim_(deltax -> 0)((deltay)/(deltax))`
Since ‘y’ is a differentiable function of ‘x’,
`lim_(deltax -> 0) ((deltay)/(deltax)) = ("d"y)/("d"x)` and `("d"y)/("d"x)` ≠ 0
∴ `lim_(deltax -> 0)((deltax)/(deltay)) = 1/(("d"y)/("d"x))`
As δx → 0, δy → 0
`lim_(deltax -> 0) ((deltay)/(deltax)) = 1/(("d"y)/("d"x))` .......(i)
Here, R.H.S. of (i) exist and are finite.
Hence, limits on L.H.S. of (i) also should exist and be finite.
∴ `lim_(deltax -> 0)((deltax)/(deltay)) = ("d"y)/("d"x)` exists and is finite.
∴ `("d"x)/("d"y) = 1/((("d"y)/("d"x))), ("d"y)/("d"x)` ≠ 0
Alternate Proof:
We know that f–1[f(x)] = x .......[Identity function]
Taking derivative on both the sides, we get
`"d"/("d"x) ["f"^-1["f"(x)]] = "d"/("d"x)(x)`
∴ `("f"^-1)"'"["f"(x)]"d"/("d"x)["f"(x)]` = 1
∴ (f–1)′[f(x)] f′(x) = 1
∴ (f–1)′[f(x)] = `1/("f""'"(x))` .......(i)
So, if y = f(x) is a differentiable function of x and x = f–1(y) exists and is differentiable then
(f–1)′[f(x)] = (f–1)′(y) = `("d"x)/("d"y)` and f'(x) = `("d"y)/("d"x)`
∴ Equation (i) becomes
`("d"x)/("d"y) = 1/(("d"y)/("d"x))` where `("d"y)/("d"x)` ≠
APPEARS IN
संबंधित प्रश्न
Solve : `"dy"/"dx" = 1 - "xy" + "y" - "x"`
If y = log (cos ex) then find `"dy"/"dx".`
Find `dy/dx if x + sqrt(xy) + y = 1`
Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`
Find `"dy"/"dx"` if xey + yex = 1
Find `"dy"/"dx"` if ex+y = cos(x – y)
Find `"dy"/"dx"` if `e^(e^(x - y)) = x/y`
Find the second order derivatives of the following : xx
Find `"dy"/"dx"` if, y = `root(3)("a"^2 + "x"^2)`
Find `"dy"/"dx"` if, y = (5x3 - 4x2 - 8x)9
Find `"dy"/"dx"` if, y = log(log x)
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
Find `"dy"/"dx"` if, y = `5^(("x" + log"x"))`
Choose the correct alternative.
If y = `sqrt("x" + 1/"x")`, then `"dy"/"dx" = ?`
If y = 2x2 + 22 + a2, then `"dy"/"dx" = ?`
If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`
Solve the following:
If y = (6x3 - 3x2 - 9x)10, find `"dy"/"dx"`
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25 + 30x – x2.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`
Find `"dy"/"dx"`, if y = xx.
If y = sec (tan−1x) then `("d"y)/("d"x)` at x = 1 is ______.
If f'(4) = 5, f(4) = 3, g'(6) = 7 and R(x) = g[3 + f(x)] then R'(4) = ______
If sin−1(x3 + y3) = a then `("d"y)/("d"x)` = ______
If x = cos−1(t), y = `sqrt(1 - "t"^2)` then `("d"y)/("d"x)` = ______
Choose the correct alternative:
If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?
Choose the correct alternative:
If y = `x^(sqrt(x))`, then `("d"y)/("d"x)` = ?
If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______
State whether the following statement is True or False:
If y = ex, then `("d"y)/("d"x)` = ex
Find `("d"y)/("d"x)`, if y = (6x3 – 3x2 – 9x)10
Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`
If y = `2/(sqrt(a^2 - b^2))tan^-1[sqrt((a - b)/(a + b)) tan x/2], "then" (d^2y)/dx^2|_{x = pi/2}` = ______
If f(x) = `(x - 2)/(x + 2)`, then f(α x) = ______
Derivative of ex sin x w.r.t. e-x cos x is ______.
`"d"/("d"x) [sin(1 - x^2)]^2` = ______.
If y = `(cos x)^((cosx)^((cosx))`, then `("d")/("d"x)` = ______.
If ex + ey = ex+y , prove that `("d"y)/("d"x) = -"e"^(y - x)`
Find `("d"y)/("d"x)`, if y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)`
If y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))`, then `"dy"/"dx"` is equal to ______.
If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
If y = log (cos ex), then `"dy"/"dx"` is:
y = sin (ax+ b)
y = `cos sqrt(x)`
If f(x) = `{{:(x^3 + 1",", x < 0),(x^2 + 1",", x ≥ 0):}`, g(x) = `{{:((x - 1)^(1//3)",", x < 1),((x - 1)^(1//2)",", x ≥ 1):}`, then (gof) (x) is equal to ______.
Let f(x) = x | x | and g(x) = sin x
Statement I gof is differentiable at x = 0 and its derivative is continuous at that point.
Statement II gof is twice differentiable at x = 0.
Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
Solve the following:
If`y=root(5)((3x^2+8x+5)^4),"find" (dy)/dx`
If `y = root5(3x^2 + 8x + 5)^4`, find `dy/dx`
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
Find `dy/dx` if ,
`x= e^(3t) , y = e^(4t+5)`
lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:
`dy/dx = dy/(du) xx (du)/dx`
Hence, find `d/dx[log(x^5 + 4)]`.
Solve the following:
If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`
If x = Φ(t) is a differentiable function of t, then prove that:
`int f(x)dx = int f[Φ(t)]*Φ^'(t)dt`
Hence, find `int(logx)^n/x dx`.
If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that
`dy/dx = dy/(du) xx (du)/dx`
Hence find `dy/dx` if y = log(x2 + 5)
Find `dy/dx` if, y = `e^(5x^2 -2x + 4)`
If y = `root5((3x^2 + 8x +5)^4)`, find `dy/dx`.
If y = `root5((3x^2+8x+5)^4)`, find `dy/dx`
Solve the following:
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`
Solve the following.
If `y=root(5)((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find `(dy) / (dx)` if, `y = e ^ (5x^2 - 2x + 4)`
If y = `root{5}{(3x^2 + 8x + 5)^4)`, find `(dy)/(dx)`
If `y = (x + sqrt(a^2 + x^2))^m`, prove that `(a^2 + x^2)(d^2y)/(dx^2) + xdy/dx - m^2y = 0`
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/(dx)`.