Advertisements
Advertisements
प्रश्न
If y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))`, then `"dy"/"dx"` is equal to ______.
उत्तर
If y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x - 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))`, then `"dy"/"dx"` is equal to 0.
APPEARS IN
संबंधित प्रश्न
if `y = tan^2(log x^3)`, find `(dy)/(dx)`
If y = log (cos ex) then find `"dy"/"dx".`
Find `"dy"/"dx"` if `xsqrt(x) + ysqrt(y) = asqrt(a)`
Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`
Find `"dy"/"dx"` if, y = `sqrt("x" + 1/"x")`
Find `"dy"/"dx"` if, y = (5x3 - 4x2 - 8x)9
Find `"dy"/"dx"` if, y = log(ax2 + bx + c)
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
Choose the correct alternative.
If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =
The derivative of f(x) = ax, where a is constant is x.ax-1.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`
Find `"dy"/"dx"`, if y = xx.
Find `"dy"/"dx"`, if y = `2^("x"^"x")`.
If x = cos−1(t), y = `sqrt(1 - "t"^2)` then `("d"y)/("d"x)` = ______
If y = cos−1 [sin (4x)], find `("d"y)/("d"x)`
If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost
Choose the correct alternative:
If y = `x^(sqrt(x))`, then `("d"y)/("d"x)` = ?
State whether the following statement is True or False:
If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a
y = (6x4 – 5x3 + 2x + 3)6, find `("d"y)/("d"x)`
Solution: Given,
y = (6x4 – 5x3 + 2x + 3)6
Let u = `[6x^4 - 5x^3 + square + 3]`
∴ y = `"u"^square`
∴ `("d"y)/"du"` = 6u6–1
∴ `("d"y)/"du"` = 6( )5
and `"du"/("d"x) = 24x^3 - 15(square) + 2`
By chain rule,
`("d"y)/("d"x) = ("d"y)/square xx square/("d"x)`
∴ `("d"y)/("d"x) = 6(6x^4 - 5x^3 + 2x + 3)^square xx (24x^3 - 15x^2 + square)`
Given f(x) = `1/(x - 1)`. Find the points of discontinuity of the composite function y = f[f(x)]
If ex + ey = ex+y , prove that `("d"y)/("d"x) = -"e"^(y - x)`
The differential equation of (x - a)2 + y2 = a2 is ______
If y = `sqrt((1 - x)/(1 + x))`, then `(1 - x^2) dy/dx + y` = ______.
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
If `y = root{5}{(3x^2 + 8x + 5)^4}, "find" dy/dx`.
Find `dy/dx` if, `y = e^(5x^2 - 2x + 4)`.