मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Find dydxdydx if, y = (5x3 - 4x2 - 8x)9 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find `"dy"/"dx"` if, y = (5x3 - 4x2 - 8x)9 

बेरीज

उत्तर

y = (5x3 - 4x2 - 8x)9 

Differentiating both sides w.r.t.x, we get

`"dy"/"dx" = "d"/"dx"` [(5x3 - 4x2 - 8x)9]

`= 9("5x"^3 - 4"x"^2 - 8"x")^8 * "d"/"dx" ("5x"^3 - 4"x"^2 - 8"x")`

`= 9("5x"^3 - 4"x"^2 - 8"x")^8 * [5(3"x"^2) - 4(2"x") - 8]`

∴ `"dy"/"dx" = 9("5x"^3 - 4"x"^2 - 8"x")^8 * (15"x"^2 - 8"x" - 8)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Differentiation - EXERCISE 3.1 [पृष्ठ ९१]

APPEARS IN

संबंधित प्रश्‍न

Solve : `"dy"/"dx" = 1 - "xy" + "y" - "x"`


Find the second order derivatives of the following : e4x. cos 5x


Find `"dy"/"dx"` if, y = log(10x4 + 5x3 - 3x2 + 2)


Choose the correct alternative.

If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =


If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.


If y = x10, then `("d"y)/("d"x)` is ______


If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______


State whether the following statement is True or False:

If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a


If u = x2 + y2 and x = s + 3t, y = 2s - t, then `(d^2u)/(ds^2)` = ______ 


Derivative of ex sin x w.r.t. e-x cos x is ______.


`"d"/("d"x) [sin(1 - x^2)]^2` = ______.


Find `("d"y)/("d"x)`, if y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)`


If y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` and 0 < x < 1, then find `("d"y)/(dx)`


If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.


Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`


Find `"dy"/"dx"` if, `"y" = "e"^(5"x"^2 - 2"x" + 4)`


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


Find the rate of change of demand (x) of acommodity with respect to its price (y) if

`y = 12 + 10x + 25x^2`


lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:

`dy/dx = dy/(du) xx (du)/dx`

Hence, find `d/dx[log(x^5 + 4)]`.


Find `(dy) / (dx)` if, `y = e ^ (5x^2 - 2x + 4)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×