Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"` if, y = log(log x)
उत्तर
y = log(log x)
Differentiating both sides w.r.t.x, we get
`"dy"/"dx" = "d"/"dx"` [log (log x)]
`= 1/(log "x") * "d"/"dx" (log "x")`
`= 1/(log "x") * 1/"x"`
∴ `"dy"/"dx" = 1/("x" * log "x")`
APPEARS IN
संबंधित प्रश्न
If y = eax. cos bx, then prove that
`(d^2y)/(dx^2) - 2ady/dx + (a^2 + b^2)y` = 0
If y = log (cos ex) then find `"dy"/"dx".`
Find `"dy"/"dx"`If x3 + x2y + xy2 + y3 = 81
Find `"dy"/"dx"` if ex+y = cos(x – y)
Find `"dy"/"dx"` if cos (xy) = x + y
Find the second order derivatives of the following : xx
If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`
Solve the following:
If y = (6x3 - 3x2 - 9x)10, find `"dy"/"dx"`
If sin−1(x3 + y3) = a then `("d"y)/("d"x)` = ______
If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x
State whether the following statement is True or False:
If y = ex, then `("d"y)/("d"x)` = ex
If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.
If x = a sec3θ and y = a tan3θ, find `("d"y)/("d"x)` at θ = `pi/3`
If f(x) = |cos x|, find f'`((3pi)/4)`
y = `cos sqrt(x)`
Let x(t) = `2sqrt(2) cost sqrt(sin2t)` and y(t) = `2sqrt(2) sint sqrt(sin2t), t ∈ (0, π/2)`. Then `(1 + (dy/dx)^2)/((d^2y)/(dx^2)` at t = `π/4` is equal to ______.
If f(x) = `sqrt(7*g(x) - 3)`, g(3) = 4 and g'(3) = 5, find f'(3).
If y = `root5((3x^2 + 8x +5)^4)`, find `dy/dx`.
Find `dy/dx` if, `y = e^(5x^2 - 2x+4)`