Advertisements
Advertisements
प्रश्न
Choose the correct alternative.
If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =
पर्याय
9(5x3 - 4x2 - 8x)8 (15x2 - 8x - 8)
9(5x3 - 4x2 - 8x)9 (15x2 - 8x - 8)
9(5x3 - 4x2 - 8x)8 (5x2 - 8x - 8)
9(5x3 - 4x2 - 8x)9 (15x2 - 8x - 8)
उत्तर
9(5x3 - 4x2 - 8x)8 (15x2 - 8x - 8)
Explanation:
y = (5x3 - 4x2 - 8x)9
Differentiating both sides w.r.t.x, we get
`"dy"/"dx" = "d"/"dx"` [(5x3 - 4x2 - 8x)9]
`= 9("5x"^3 - 4"x"^2 - 8"x")^8 * "d"/"dx" ("5x"^3 - 4"x"^2 - 8"x")`
`= 9("5x"^3 - 4"x"^2 - 8"x")^8 * [5(3"x"^2) - 4(2"x") - 8]`
∴ `"dy"/"dx" = 9("5x"^3 - 4"x"^2 - 8"x")^8 * (15"x"^2 - 8"x" - 8)`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"` if `xsqrt(x) + ysqrt(y) = asqrt(a)`
Find `dy/dx if x + sqrt(xy) + y = 1`
Find `"dy"/"dx"` if xey + yex = 1
Find the second order derivatives of the following : e4x. cos 5x
State whether the following is True or False:
The derivative of polynomial is polynomial.
`d/dx(10^x) = x*10^(x - 1)`
If x = cos−1(t), y = `sqrt(1 - "t"^2)` then `("d"y)/("d"x)` = ______
If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x
State whether the following statement is True or False:
If y = ex, then `("d"y)/("d"x)` = ex
Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`
If u = x2 + y2 and x = s + 3t, y = 2s - t, then `(d^2u)/(ds^2)` = ______
If y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))`, then `"dy"/"dx"` is equal to ______.
If `d/dx` [f(x)] = ax+ b and f(0) = 0, then f(x) is equal to ______.
Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`
Find `dy/dx` if, y = `e^(5 x^2 - 2x + 4)`
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find `dy/dx` if ,
`x= e^(3t) , y = e^(4t+5)`
If y = `root5((3x^2+8x+5)^4)`, find `dy/dx`
Solve the following:
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`