Advertisements
Advertisements
प्रश्न
Choose the correct alternative.
If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =
विकल्प
9(5x3 - 4x2 - 8x)8 (15x2 - 8x - 8)
9(5x3 - 4x2 - 8x)9 (15x2 - 8x - 8)
9(5x3 - 4x2 - 8x)8 (5x2 - 8x - 8)
9(5x3 - 4x2 - 8x)9 (15x2 - 8x - 8)
उत्तर
9(5x3 - 4x2 - 8x)8 (15x2 - 8x - 8)
Explanation:
y = (5x3 - 4x2 - 8x)9
Differentiating both sides w.r.t.x, we get
`"dy"/"dx" = "d"/"dx"` [(5x3 - 4x2 - 8x)9]
`= 9("5x"^3 - 4"x"^2 - 8"x")^8 * "d"/"dx" ("5x"^3 - 4"x"^2 - 8"x")`
`= 9("5x"^3 - 4"x"^2 - 8"x")^8 * [5(3"x"^2) - 4(2"x") - 8]`
∴ `"dy"/"dx" = 9("5x"^3 - 4"x"^2 - 8"x")^8 * (15"x"^2 - 8"x" - 8)`
APPEARS IN
संबंधित प्रश्न
If y = log (cos ex) then find `"dy"/"dx".`
Find `"dy"/"dx"` if, y = `sqrt("x" + 1/"x")`
If y = 2x2 + 22 + a2, then `"dy"/"dx" = ?`
`d/dx(10^x) = x*10^(x - 1)`
Find `"dy"/"dx"`, if y = xx.
If sin−1(x3 + y3) = a then `("d"y)/("d"x)` = ______
Choose the correct alternative:
If y = `x^(sqrt(x))`, then `("d"y)/("d"x)` = ?
If y = x10, then `("d"y)/("d"x)` is ______
If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______
If y = x2, then `("d"^2y)/("d"x^2)` is ______
If u = x2 + y2 and x = s + 3t, y = 2s - t, then `(d^2u)/(ds^2)` = ______
Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`
Solve the following:
If y = `root5 ((3x^2 + 8x + 5)^4 ,) "find" "dy"/ "dx"`
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find `dy/dx` if, y = `e^(5x^2-2x+4)`
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find `dy/dx` if, `y = e^(5x^2 - 2x +4)`
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/(dx)`.