Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"`, if y = xx.
उत्तर
y = xx.
Taking logarithm of both sides, we get
log y = log (xx)
∴ log y = x log x
Differentiating both sides w.r.t.x, we get
`1/"y" * "dy"/"dx" = "x" * "d"/"dx" (log "x") + log "x" * "d"/"dx" ("x")`
`= "x" * 1/"x" + log "x" (1)`
∴ `1/"y" * "dy"/"dx" = 1 + log x`
∴ `"dy"/"dx" = "y"(1 + log "x")`
∴ `"dy"/"dx" = "x"^"x" (1 + log "x")`
APPEARS IN
संबंधित प्रश्न
If y = log (cos ex) then find `"dy"/"dx".`
Find `dy/dx if x + sqrt(xy) + y = 1`
Find `"dy"/"dx"` if `e^(e^(x - y)) = x/y`
Find `"dy"/"dx"` if, y = `5^(("x" + log"x"))`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25 + 30x – x2.
If y = `1/sqrt(3x^2 - 2x - 1)`, then `("d"y)/("d"x)` = ?
State whether the following statement is True or False:
If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a
Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`
Find `("d"y)/("d"x)`, if y = `root(5)((3x^2 + 8x + 5)^4`
y = (6x4 – 5x3 + 2x + 3)6, find `("d"y)/("d"x)`
Solution: Given,
y = (6x4 – 5x3 + 2x + 3)6
Let u = `[6x^4 - 5x^3 + square + 3]`
∴ y = `"u"^square`
∴ `("d"y)/"du"` = 6u6–1
∴ `("d"y)/"du"` = 6( )5
and `"du"/("d"x) = 24x^3 - 15(square) + 2`
By chain rule,
`("d"y)/("d"x) = ("d"y)/square xx square/("d"x)`
∴ `("d"y)/("d"x) = 6(6x^4 - 5x^3 + 2x + 3)^square xx (24x^3 - 15x^2 + square)`
Derivative of ex sin x w.r.t. e-x cos x is ______.
Find `("d"y)/("d"x)`, if y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)`
Differentiate the function from over no 15 to 20 sin (x2 + 5)
y = cos (sin x)
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find `dy/dx` if, y = `e^(5x^2 -2x + 4)`
If y = `root5((3x^2 + 8x +5)^4)`, find `dy/dx`.
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`