Advertisements
Advertisements
प्रश्न
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25 + 30x – x2.
उत्तर
y = 25 + 30x – x2.
Differentiating both sides w.r.t. x, we get
`"dy"/"dx" = "d"/"dx" (25 + 30"x" - "x"^2) = 0 + 30 - 2"x"`
∴ `"dy"/"dx" = 30 - 2"x"`
Now, by the derivative of an inverse function, the rate of change of demand (x) w.r.t. price(y) is
`"dx"/"dy" = 1/(("dy"/"dx"))`, where `"dy"/"dx" ne 0`.
i.e. `"dx"/"dy" = 1/(30 - 2"x")`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"` if ex+y = cos(x – y)
Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`
Find the second order derivatives of the following : e2x . tan x
If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`
If f'(4) = 5, f(4) = 3, g'(6) = 7 and R(x) = g[3 + f(x)] then R'(4) = ______
Choose the correct alternative:
If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?
If y = (5x3 – 4x2 – 8x)9, then `("d"y)/("d"x)` is ______
State whether the following statement is True or False:
If y = ex, then `("d"y)/("d"x)` = ex
If f(x) = `(x - 2)/(x + 2)`, then f(α x) = ______
If y = (sin x2)2, then `("d"y)/("d"x)` is equal to ______.
Find `("d"y)/("d"x)`, if y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)`
Differentiate the function from over no 15 to 20 sin (x2 + 5)
Let f(x) = log x + x3 and let g(x) be the inverse of f(x), then |64g"(1)| is equal to ______.
If f(x) = `{{:(x^3 + 1",", x < 0),(x^2 + 1",", x ≥ 0):}`, g(x) = `{{:((x - 1)^(1//3)",", x < 1),((x - 1)^(1//2)",", x ≥ 1):}`, then (gof) (x) is equal to ______.
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
If y = `tan^-1((6x - 7)/(6 + 7x))`, then `dy/dx` = ______.
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/(dx)`.