हिंदी

If f'(4) = 5, f(4) = 3, g'(6) = 7 and R(x) = g[3 + f(x)] then R'(4) = ______ - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If f'(4) = 5, f(4) = 3, g'(6) = 7 and R(x) = g[3 + f(x)] then R'(4) = ______

विकल्प

  • 35

  • 12

  • `7/5`

  • 105

MCQ
रिक्त स्थान भरें

उत्तर

35

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.1: Differentiation - MCQ

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If y = eax. cos bx, then prove that

`(d^2y)/(dx^2) - 2ady/dx + (a^2 + b^2)y` = 0


Solve : `"dy"/"dx" = 1 - "xy" + "y" - "x"`


Find `"dy"/"dx"` if `sqrt(x) + sqrt(y) = sqrt(a)`


Find `"dy"/"dx"` if `xsqrt(x) + ysqrt(y) = asqrt(a)`


Find `dy/dx if x + sqrt(xy) + y = 1`


Find `"dy"/"dx"`If x3 + x2y + xy2 + y3 = 81


Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`


Find `"dy"/"dx"` if ex+y = cos(x – y)


Find `"dy"/"dx"` if cos (xy) = x + y


Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`


Find the second order derivatives of the following : e2x . tan x


Find `"dy"/"dx"` if, y = `root(3)("a"^2 + "x"^2)`


Find `"dy"/"dx"` if, y = (5x3 - 4x2 - 8x)9 


Find `"dy"/"dx"` if, y = log(ax2 + bx + c) 


Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`


Find `"dy"/"dx"` if, y = `5^(("x" + log"x"))`


The derivative of f(x) = ax, where a is constant is x.ax-1.


If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25 + 30x  – x2.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`


Find `"dy"/"dx"`, if y = xx.


Find `"dy"/"dx"`, if y = `2^("x"^"x")`.


Differentiate `"e"^("4x" + 5)` with respect to 104x.


If y = cos−1 [sin (4x)], find `("d"y)/("d"x)`


Suppose y = f(x) is a differentiable function of x on an interval I and y is one – one, onto and `("d"y)/("d"x)` ≠ 0 on I. Also if f–1(y) is differentiable on f(I), then `("d"x)/("d"y) = 1/(("d"y)/("d"x)), ("d"y)/("d"x)` ≠ 0


If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost


Choose the correct alternative:

If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?


If y = (5x3 – 4x2 – 8x)9, then `("d"y)/("d"x)` is ______


If y = x2, then `("d"^2y)/("d"x^2)` is ______


State whether the following statement is True or False:

If y = ex, then `("d"y)/("d"x)` = ex 


State whether the following statement is True or False:

If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a


If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.


Derivative of ex sin x w.r.t. e-x cos x is ______.


`"d"/("d"x) [sin(1 - x^2)]^2` = ______.


If y = `(cos x)^((cosx)^((cosx))`, then `("d")/("d"x)` = ______.


Given f(x) = `1/(x - 1)`. Find the points of discontinuity of the composite function y = f[f(x)]


If ex + ey = ex+y , prove that `("d"y)/("d"x) = -"e"^(y - x)`


If f(x) = |cos x|, find f'`((3pi)/4)`


If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)` 


If y = log (cos ex), then `"dy"/"dx"` is:


Differentiate the function from over no 15 to 20 sin (x2 + 5)


y = `cos sqrt(x)`


Let f(x) = log x + x3 and let g(x) be the inverse of f(x), then |64g"(1)| is equal to ______.


Let x(t) = `2sqrt(2) cost sqrt(sin2t)` and y(t) = `2sqrt(2) sint sqrt(sin2t), t ∈ (0, π/2)`. Then `(1 + (dy/dx)^2)/((d^2y)/(dx^2)` at t = `π/4` is equal to ______.


If f(x) = `{{:(x^3 + 1",", x < 0),(x^2 + 1",", x ≥ 0):}`, g(x) = `{{:((x - 1)^(1//3)",", x < 1),((x - 1)^(1//2)",", x ≥ 1):}`, then (gof) (x) is equal to ______.


If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.


If `d/dx` [f(x)] = ax+ b and f(0) = 0, then f(x) is equal to ______.


Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`


Find `dy/dx` if, `y=e^(5x^2-2x+4)`


Solve the following:

If`y=root(5)((3x^2+8x+5)^4),"find" (dy)/dx`


If `y = root5(3x^2 + 8x + 5)^4`, find `dy/dx`


Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


The differential equation of (x - a)2 + y2 = a2 is ______ 


Find `dy/dx` if, y = `e^(5 x^2 - 2x + 4)`


Find the rate of change of demand (x) of acommodity with respect to its price (y) if

`y = 12 + 10x + 25x^2`


Find `dy/dx` if ,

`x= e^(3t) , y = e^(4t+5)`


lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:

`dy/dx = dy/(du) xx (du)/dx`

Hence, find `d/dx[log(x^5 + 4)]`.


Find `dy/dx` if, y = `e^(5x^2-2x+4)`


If x = Φ(t) is a differentiable function of t, then prove that:

`int f(x)dx = int f[Φ(t)]*Φ^'(t)dt`

Hence, find `int(logx)^n/x dx`.


If y = `sqrt((1 - x)/(1 + x))`, then `(1 - x^2) dy/dx + y` = ______.


If y = `log((x + sqrt(x^2 + a^2))/(sqrt(x^2 + a^2) - x))`, find `dy/dx`.


If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that

`dy/dx = dy/(du) xx (du)/dx`

Hence find `dy/dx` if y = log(x2 + 5)


Find `dy/dx` if, y = `e^(5x^2 -2x + 4)`


If y = `root5((3x^2 + 8x +5)^4)`, find `dy/dx`. 


Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


Find `dy/dx` if, `y=e^(5x^2-2x+4)`


If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`


Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`


Solve the following:

If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"` 


Find `dy/dx` if, `y = e^(5x^2 - 2x+4)`


Solve the following.

If `y=root(5)((3x^2 + 8x + 5)^4)`, find `dy/dx`


Find `(dy) / (dx)` if, `y = e ^ (5x^2 - 2x + 4)`


If y = `root{5}{(3x^2 + 8x + 5)^4)`, find `(dy)/(dx)`


Find `dy/dx` if, `y = e^(5x^2 - 2x +  4)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×