Advertisements
Advertisements
प्रश्न
If ex + ey = ex+y , prove that `("d"y)/("d"x) = -"e"^(y - x)`
उत्तर
Given that ex + ey = ex+y.
Differentiating both sides w.r.t. x, we have
`"e"^x + "e"^y ("d"y)/("d"x) = "e"^(x + y) (1 + ("d"y)/("d"x))`
or `("e"^y - "e"^(x + y)) ("d"y)/("d"x) = "e"^(x + y) - "e"^x`
Which implies that `("d"y)/("d"x) = ("e"^(x + y) - "e"^x)/("e"^y - "e"^(x + y))`
= `("e"^x + "e"^y - "e"^x)/("e"^y - "e"^x - "e"^y)`
= –ey–x.
APPEARS IN
संबंधित प्रश्न
Solve the following differential equation:
x2 dy + (xy + y2) dx = 0, when x = 1 and y = 1
If y = log (cos ex) then find `"dy"/"dx".`
Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`
Find `"dy"/"dx"` if xey + yex = 1
Find the second order derivatives of the following : e4x. cos 5x
Find `"dy"/"dx"` if, y = log(10x4 + 5x3 - 3x2 + 2)
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`
If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost
If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______
If y = x2, then `("d"^2y)/("d"x^2)` is ______
State whether the following statement is True or False:
If y = ex, then `("d"y)/("d"x)` = ex
Derivative of ex sin x w.r.t. e-x cos x is ______.
If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
Differentiate the function from over no 15 to 20 sin (x2 + 5)
y = `sec (tan sqrt(x))`
If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.
Let f(x) = log x + x3 and let g(x) be the inverse of f(x), then |64g"(1)| is equal to ______.
Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`
Find `"dy"/"dx"` if, `"y" = "e"^(5"x"^2 - 2"x" + 4)`
If f(x) = `sqrt(7*g(x) - 3)`, g(3) = 4 and g'(3) = 5, find f'(3).
Solve the following:
If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`
If y = `log((x + sqrt(x^2 + a^2))/(sqrt(x^2 + a^2) - x))`, find `dy/dx`.
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
Find `dy/dx` if, y = `e^(5x^2-2x+4)`
Solve the following:
If `y =root(5)((3x^2 + 8x + 5)^4), "find" dy/(dx)`
Solve the following:
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`