Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"` if, y = log(10x4 + 5x3 - 3x2 + 2)
उत्तर
y = log(10x4 + 5x3 - 3x2 + 2)
Differentiating both sides w.r.t.x, we get
`"dy"/"dx" = "d"/"dx"[log (10"x"^4 + 5"x"^3 - 3"x"^2 + 2)]`
`= 1/(10"x"^4 + 5"x"^3 - 3"x"^2 + 2) * "d"/"dx" (10"x"^4 + 5"x"^3 - 3"x"^2 + 2)`
`= 1/(10"x"^4 + 5"x"^3 - 3"x"^2 + 2) * [10(4"x"^3) + 5(3"x"^2) - 3(2"x") + 0]`
∴ `"dy"/"dx" = (40"x"^3 + 15"x"^2 - 6"x")/(10"x"^4 + 5"x"^3 - 3"x"^2 + 2)`
APPEARS IN
संबंधित प्रश्न
Choose the correct alternative.
If y = `sqrt("x" + 1/"x")`, then `"dy"/"dx" = ?`
State whether the following is True or False:
The derivative of polynomial is polynomial.
If y = `1/sqrt(3x^2 - 2x - 1)`, then `("d"y)/("d"x)` = ?
State whether the following statement is True or False:
If y = ex, then `("d"y)/("d"x)` = ex
Find `("d"y)/("d"x)`, if y = (6x3 – 3x2 – 9x)10
If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.
Find `("d"y)/("d"x)`, if y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)`
If x = a sec3θ and y = a tan3θ, find `("d"y)/("d"x)` at θ = `pi/3`
Let f(x) = log x + x3 and let g(x) be the inverse of f(x), then |64g"(1)| is equal to ______.
Let f(x) = x | x | and g(x) = sin x
Statement I gof is differentiable at x = 0 and its derivative is continuous at that point.
Statement II gof is twice differentiable at x = 0.
Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`
Find `dy/dx` if ,
`x= e^(3t) , y = e^(4t+5)`
Find `dy/dx` if, y = `e^(5x^2-2x+4)`
If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that
`dy/dx = dy/(du) xx (du)/dx`
Hence find `dy/dx` if y = log(x2 + 5)
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`
Find `(dy) / (dx)` if, `y = e ^ (5x^2 - 2x + 4)`