Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"` if, y = log(ax2 + bx + c)
उत्तर
y = log(ax2 + bx + c)
Differentiating both sides w.r.t.x, we get
`"dy"/"dx" = "d"/"dx"` [log(ax2 + bx + c)]
`= 1/("ax"^2 + "bx" + "c") * "d"/"dx" ("ax"^2 + "bx" + "c")`
`= 1/("ax"^2 + "bx" + "c") * ["a"("2x") + "b" + 0]`
∴ `"dy"/"dx" = ("2ax" + "b")/("ax"^2 + "bx" + "c")`
APPEARS IN
संबंधित प्रश्न
if `y = tan^2(log x^3)`, find `(dy)/(dx)`
Find `"dy"/"dx"` if ex+y = cos(x – y)
`d/dx(10^x) = x*10^(x - 1)`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25 + 30x – x2.
If x = cos−1(t), y = `sqrt(1 - "t"^2)` then `("d"y)/("d"x)` = ______
If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost
Choose the correct alternative:
If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?
Find `("d"y)/("d"x)`, if y = (6x3 – 3x2 – 9x)10
Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`
If y = (sin x2)2, then `("d"y)/("d"x)` is equal to ______.
If y = `(cos x)^((cosx)^((cosx))`, then `("d")/("d"x)` = ______.
If ex + ey = ex+y , prove that `("d"y)/("d"x) = -"e"^(y - x)`
If y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` and 0 < x < 1, then find `("d"y)/(dx)`
Differentiate the function from over no 15 to 20 sin (x2 + 5)
y = `2sqrt(cotx^2)`
The differential equation of (x - a)2 + y2 = a2 is ______
Find `dy/dx` if, `y = e^(5x^2 - 2x +4)`
Solve the following:
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`
Solve the following.
If `y=root(5)((3x^2 + 8x + 5)^4)`, find `dy/dx`