हिंदी

Find dydx, if y = (6x3 – 3x2 – 9x)10 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find `("d"y)/("d"x)`, if y = (6x3 – 3x2 – 9x)10 

योग

उत्तर

y = (6x3 – 3x2 – 9x)10 

Differentiating both sides w.r.t. x, we get

`("d"y)/("d"x) = "d"/("d"x)[(6x^3 - 3x^2 - 9x)^10]`

= `10(6x^3 - 3x^2 - 9x)^9 xx "d"/("d"x) (6x^3 - 3x^2 - 9x)`

= 10(6x3 − 3x2 − 9x)9 × [6(3x2) – 3(2x) − 9]

∴ `("d"y)/("d"x)` = = 10(6x3 − 3x2 − 9x)9 . (18x2 − 6x − 9)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.3: Differentiation - Q.4

संबंधित प्रश्न

Solve : `"dy"/"dx" = 1 - "xy" + "y" - "x"`


Fill in the Blank

If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`


Choose the correct alternative:

If y = `x^(sqrt(x))`, then `("d"y)/("d"x)` = ?


If y = `(cos x)^((cosx)^((cosx))`, then `("d")/("d"x)` = ______.


Differentiate `sqrt(tansqrt(x))` w.r.t. x


If y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` and 0 < x < 1, then find `("d"y)/(dx)`


If y = log (cos ex), then `"dy"/"dx"` is:


y = `sec (tan sqrt(x))`


Let f(x) = log x + x3 and let g(x) be the inverse of f(x), then |64g"(1)| is equal to ______.


If y = 2x2 + a2 + 22 then `dy/dx` = ______.


Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`


Solve the following:

If y = `root5 ((3x^2 + 8x + 5)^4 ,)  "find"  "dy"/ "dx"`


Find `"dy"/"dx"` if, `"y" = "e"^(5"x"^2 - 2"x" + 4)`


Find `dy/dx` if ,

`x= e^(3t) , y = e^(4t+5)`


lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:

`dy/dx = dy/(du) xx (du)/dx`

Hence, find `d/dx[log(x^5 + 4)]`.


If x = Φ(t) is a differentiable function of t, then prove that:

`int f(x)dx = int f[Φ(t)]*Φ^'(t)dt`

Hence, find `int(logx)^n/x dx`.


If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that

`dy/dx = dy/(du) xx (du)/dx`

Hence find `dy/dx` if y = log(x2 + 5)


If `y = (x + sqrt(a^2 + x^2))^m`, prove that `(a^2 + x^2)(d^2y)/(dx^2) + xdy/dx - m^2y = 0`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×