Advertisements
Advertisements
प्रश्न
Solve : `"dy"/"dx" = 1 - "xy" + "y" - "x"`
उत्तर
`"dy"/"dx" = 1 - "xy" + "y" - "x"`
`"dy"/"dx" = (1 + "y") - "x" (1 + "y")`
`"dy"/"dx" = (1 + "y") (1 - "x")`
`"dy"/(1 + "y") = (1 - "x")"dx"`
Integrating bothe sides, we obtain
`int"dy"/(1 + "y") = int (1 - "x")"dx"`
log |1 + y| `= "x" - "x"^2/2 + "C"`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"` if ex+y = cos(x – y)
Find the second order derivatives of the following : e2x . tan x
Find the second order derivatives of the following : e4x. cos 5x
Find `"dy"/"dx"` if, y = `sqrt("x" + 1/"x")`
Find `"dy"/"dx"` if, y = log(ax2 + bx + c)
Choose the correct alternative.
If y = `sqrt("x" + 1/"x")`, then `"dy"/"dx" = ?`
Differentiate `"e"^("4x" + 5)` with respect to 104x.
If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x
If y = `1/sqrt(3x^2 - 2x - 1)`, then `("d"y)/("d"x)` = ?
Choose the correct alternative:
If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?
State whether the following statement is True or False:
If y = ex, then `("d"^2y)/("d"x^2)` = ex
Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`
If y = (sin x2)2, then `("d"y)/("d"x)` is equal to ______.
Differentiate `sqrt(tansqrt(x))` w.r.t. x
If ex + ey = ex+y , prove that `("d"y)/("d"x) = -"e"^(y - x)`
y = cos (sin x)
y = `sec (tan sqrt(x))`
y = `cos sqrt(x)`
If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.
If `y = root5(3x^2 + 8x + 5)^4`, find `dy/dx`
Find `dy/dx` if, y = `e^(5 x^2 - 2x + 4)`
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find `dy/dx` if, y = `e^(5x^2-2x+4)`
If y = `root5((3x^2 + 8x +5)^4)`, find `dy/dx`.
If y = `root5((3x^2+8x+5)^4)`, find `dy/dx`
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`
Find `(dy) / (dx)` if, `y = e ^ (5x^2 - 2x + 4)`