हिंदी

Using Properties of Determinants, Prove That: |(A,B,B+C),(C,A,C+A),(B,C,A+B)| = (A+B+C)(A-c)2 - Mathematics

Advertisements
Advertisements

प्रश्न

Using properties of determinants, prove that:

`|(a,b,b+c),(c,a,c+a),(b,c,a+b)|` = (a+b+c)(a-c)2 

योग

उत्तर

Let Δ = `|(a,b,b+c),(c,a,c+a),(b,c,a+b)|`

Operating C3 → C3 - C2 , we obtain

Δ =`|(a,b,c),(c,a,c),(b,c,a+b-c)|`

Operating R1 → R1 + R2 + R3 , we obtain

Δ =`|(a+b+c,a+b+c,a+b+c),(c,a,c),(b,c,a+b-c)|`

Taking (a + b + c) common from R1 , we obtain

= (a+b+c) `|(1,1,1),(c,a,c),(b,c,a+b-c)|`

Operating C1 → C1 - C3 , C2 → C2 - C3 , we obtain 

= (a+b+c) `|(0,0,0),(0,a-c,c),(c-a,2c-a-b,a+b-c)|`

Expanding along R1 , we obtain

= (a+b+c){-(a-c)(a-c)}

= (a+b+c)(a-c)2 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2016-2017 (March) Set 1

संबंधित प्रश्न

By using properties of determinants, show that:

`|(1,a,a^2),(1,b,b^2),(1,c,c^2)| = (a - b)(b-c)(c-a)`


By using properties of determinants, show that:

`|(1,x,x^2),(x^2,1,x),(x,x^2,1)| = (1-x^3)^2`


By using properties of determinants, show that:

`|(1+a^2-b^2, 2ab, -2b),(2ab, 1-a^+b^2, 2a),(2b, -2a, 1-a^2-b^2)| = (1+a^2+b^2)`


Using properties of determinants, prove that:

`|(x, x^2, 1+px^3),(y, y^2, 1+py^3),(z, z^2, 1+pz^2)|` = (1 + pxyz) (x – y) (y – z) (z – x), where p is any scalar.


Using properties of determinants, prove that:

`|(3a, -a+b, -a+c),(-b+a, 3b, -b+c),(-c+a, -c+b, 3c)|`= 3(a + b + c) (ab + bc + ca)


Using properties of determinants, prove that

`|(sin alpha, cos alpha, cos(alpha+ delta)),(sin beta, cos beta, cos (beta + delta)),(sin gamma, cos gamma, cos (gamma+ delta))| = 0`


Using properties of determinants, prove the following:

\[\begin{vmatrix}x^2 + 1 & xy & xz \\ xy & y^2 + 1 & yz \\ xz & yz & z^2 + 1\end{vmatrix} = 1 + x^2 + y^2 + z^2\] .

Using properties of determinants, show that `|("a" + "b", "a", "b"),("a", "a" + "c", "c"),("b", "c", "b" + "c")|` = 4abc.


Without expanding determinants, prove that `|(1, yz, y + z),(1, zx, z + x),(1, xy, x + y)| = |(1, x, x^2),(1, y, y^2),(1, z, z^2)|`.


Find the value (s) of x, if `|(1, 4, 20),(1, -2, -5),(1, 2x, 5x^2)|` = 0


Find the value (s) of x, if `|(1, 2x, 4x),(1, 4, 16),(1, 1, 1)|` = 0


Without expanding the determinants, show that `|("b" + "c", "bc", "b"^2"c"^2),("c" + "a", "ca", "c"^2"a"^2),("a" +  "b", "ab", "a"^2"b"^2)|` = 0


Without expanding evaluate the following determinant:

`|(1, "a", "b" + "c"),(1, "b", "c" + "a"),(1, "c", "a" + "b")|`


Using properties of determinant show that

`|(1, log_x y, log_x z),(log_y x, 1, log_y z),(log_z x, log_z y, 1)|` = 0


Without expanding determinants show that

`|(1, 3, 6),(6, 1, 4),(3, 7, 12)| + 4|(2, 3, 3),(2, 1, 2),(1, 7, 6)| = 10|(1, 2, 1),(3, 1, 7),(3, 2, 6)|`


If `|("x"^"k", "x"^("k" + 2), "x"^("k" + 3)),("y"^"k", "y"^("k" + 2), "y"^("k" + 3)),("z"^"k", "z"^("k" + 2), "z"^("k" + 3))|` = (x - y) (y - z) (z - x)`(1/"x"+ 1/"y" + 1/"z") ` then


Evaluate: `|(x + 4, x, x),(x, x + 4, x),(x, x, x + 4)|`


If A + B + C = 0, then prove that `|(1, cos"c", cos"B"),(cos"C", 1, cos"A"),(cos"B", cos"A", 1)|` = 0


The value of the determinant `|(x , x + y, x + 2y),(x + 2y, x, x + y),(x + y, x + 2y, x)|` is ______.


If the determinant `|(x + "a", "p" + "u", "l" + "f"),("y" + "b", "q" + "v", "m" + "g"),("z" + "c", "r" + "w", "n" + "h")|` splits into exactly K determinants of order 3, each element of which contains only one term, then the value of K is 8.


If `abs ((2"x",5),(8, "x")) = abs ((6,-2),(7,3)),`  then the value of x is ____________.


Using properties of determinants `abs ((1, "a", "a"^2 - "bc"),(1, "b", "b"^2 - "ca"),(1, "c", "c"^2 - "ab")) =` ____________.


A system of linear equations represented in matrix form Ax = 0, A is n × n matrix, has a non-zero solution if the determinant of A (i.e., det(A)) is


The value of the determinant `|(6, 0, -1),(2, 1, 4),(1, 1, 3)|` is ______.


By using properties of determinant prove that

`|(x+ y,y+z, z+x ),(z, x,y),(1,1,1)|` = 0 


Evaluate the following determinant without expanding:

`|(5, 5, 5),(a, b, c),(b + c, c + a, a + b)|`


Without expanding determinant find the value of `|(10,57,107),(12,64,124),(15,78,153)|`


The value of the determinant of a matrix A of order 3 is 3. If C is the matrix of cofactors of the matrix A, then what is the value of determinant of C2?


By using properties of determinant prove that `|(x+y,y+z,z+x),(z,x,y),(1,1,1)|` = 0.


Without expanding evaluate the following determinant.

`|(1, a, b + c),(1, b, c + a),(1, c, a + b)|`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×