Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"` if, y = `sqrt("x" + 1/"x")`
उत्तर
y = `sqrt("x" + 1/"x")`
Let u = `"x" + 1/"x"`
∴ y = `sqrt"u"`
Differentiating both sides w.r.t. u, we get
`"dy"/"dx" = "d"/"du" (sqrt"u") = 1/(2sqrt"u")`
u = `"x" + 1/"x"`
Differentiating both sides w.r.t. x, we get
`"du"/"dx" = "d"/"dx"("x" + 1/"x") = 1 - 1/"x"^2`
By chain rule, we get
`"dy"/"dx" = "dy"/"du" xx "du"/"dx" = 1/(2sqrt"u") xx (1 - 1/"x"^2)`
`= 1/(2sqrt("x" + 1/"x")) (1 - 1/"x"^2)`
∴ `"dy"/"dx" = 1/2 ("x" + 1/"x")^(-1/2)(1 - 1/"x"^2)`
Alternate Method:
y = `sqrt("x" + 1/"x")`
∴ y = `("x" + 1/"x")^(1/2)`
Differentiating both sides w.r.t.x, we get
`"dy"/"dx" = "d"/"dx"[("x" + 1/"x")^(1/2)]`
`= 1/2 ("x" + 1/"x")^(-1/2) * "d"/"dx" (1 + 1/"x")`
`"dy"/"dx" = 1/2 ("x" + 1/"x")^(-1/2) (1 - 1/"x"^2)`
APPEARS IN
संबंधित प्रश्न
If y = eax. cos bx, then prove that
`(d^2y)/(dx^2) - 2ady/dx + (a^2 + b^2)y` = 0
Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`
Find `"dy"/"dx"` if, y = `5^(("x" + log"x"))`
Choose the correct alternative.
If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =
`d/dx(10^x) = x*10^(x - 1)`
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`
State whether the following statement is True or False:
If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a
If y = `(cos x)^((cosx)^((cosx))`, then `("d")/("d"x)` = ______.
Differentiate `sqrt(tansqrt(x))` w.r.t. x
Find `("d"y)/("d"x)`, if y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)`
If f(x) = |cos x – sinx|, find `"f'"(pi/6)`
Differentiate the function from over no 15 to 20 sin (x2 + 5)
Find the rate of change of demand (x) of acommodity with respect to its price (y) if
`y = 12 + 10x + 25x^2`
Find `dy/dx` if, y = `e^(5x^2 -2x + 4)`
If y = `root5((3x^2 + 8x +5)^4)`, find `dy/dx`.
Solve the following:
If `y =root(5)((3x^2 + 8x + 5)^4), "find" dy/(dx)`
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`