Advertisements
Advertisements
प्रश्न
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`
उत्तर
y = `(5x + 7)/(2x - 13)`
Differentiating both sides w.r.t. x, we get
`("d"y)/("d"x) = "d"/("d"x) ((5x + 7)/(2x - 13))`
= `((2x - 13)*"d"/("d"x) (5x + 7) - (5x + 7)*"d"/("d"x)(2x - 13))/(2x - 13)^2`
= `((2x - 13)(5 xx 1 + 0) - (5x + 7)(2 xx 1 - 0))/(2x - 13)^2`
= `((2x - 13)(5) - (5x + 7)(2))/(2x - 13)^2`
= `(10x - 65 - 10x - 14)/(2x - 13)^2`
∴ `("d"y)/("d"x) = (-79)/(2x - 13)^2`
Now, by derivative of inverse function, the rate of change of demand (x) w.r.t. price(y) is
`("d"x)/("d"y) = 1/((("d"y)/("d"x)))`, where `"dy"/"dx" ne 0`
i.e. `("d"x)/("d"y) = 1/((- 79)/(2x - 13)^2)`
`= (-(2x - 13)^2)/79`
APPEARS IN
संबंधित प्रश्न
If y = eax. cos bx, then prove that
`(d^2y)/(dx^2) - 2ady/dx + (a^2 + b^2)y` = 0
Solve the following differential equation:
x2 dy + (xy + y2) dx = 0, when x = 1 and y = 1
If y = log (cos ex) then find `"dy"/"dx".`
Find `dy/dx if x + sqrt(xy) + y = 1`
Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`
Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`
Choose the correct alternative.
If y = `sqrt("x" + 1/"x")`, then `"dy"/"dx" = ?`
Fill in the Blank
If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________
If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost
If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______
Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`
Find `("d"y)/("d"x)`, if y = `root(5)((3x^2 + 8x + 5)^4`
If y = `2/(sqrt(a^2 - b^2))tan^-1[sqrt((a - b)/(a + b)) tan x/2], "then" (d^2y)/dx^2|_{x = pi/2}` = ______
Find `("d"y)/("d"x)`, if y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)`
If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.
The differential equation of (x - a)2 + y2 = a2 is ______
Find `dy/dx` if ,
`x= e^(3t) , y = e^(4t+5)`
lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:
`dy/dx = dy/(du) xx (du)/dx`
Hence, find `d/dx[log(x^5 + 4)]`.
If y = `root5((3x^2+8x+5)^4)`, find `dy/dx`
Find `dy/dx` if, `y = e^(5x^2 - 2x +4)`
Solve the following:
If `y =root(5)((3x^2 + 8x + 5)^4), "find" dy/(dx)`
If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`
Find `dy/dx` if, `y = e^(5x^2 - 2x+4)`
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/(dx)`.