हिंदी

Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 5x+72x-13 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`

योग

उत्तर

y = `(5x + 7)/(2x - 13)`

Differentiating both sides w.r.t. x, we get

`("d"y)/("d"x) = "d"/("d"x) ((5x + 7)/(2x - 13))`

= `((2x - 13)*"d"/("d"x) (5x + 7) - (5x + 7)*"d"/("d"x)(2x - 13))/(2x - 13)^2`

= `((2x - 13)(5 xx 1 + 0) - (5x + 7)(2 xx 1 - 0))/(2x - 13)^2`

= `((2x - 13)(5) - (5x + 7)(2))/(2x - 13)^2`

= `(10x - 65 - 10x - 14)/(2x - 13)^2`

∴ `("d"y)/("d"x) = (-79)/(2x - 13)^2`

Now, by derivative of inverse function, the rate of change of demand (x) w.r.t. price(y) is

`("d"x)/("d"y) = 1/((("d"y)/("d"x)))`, where `"dy"/"dx" ne 0`

i.e. `("d"x)/("d"y) = 1/((- 79)/(2x - 13)^2)`

`= (-(2x - 13)^2)/79`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.3: Differentiation - Q.4

संबंधित प्रश्न

If y = eax. cos bx, then prove that

`(d^2y)/(dx^2) - 2ady/dx + (a^2 + b^2)y` = 0


Solve the following differential equation: 
x2 dy + (xy + y2) dx = 0, when x = 1 and y = 1


If y = log (cos ex) then find `"dy"/"dx".`


Find `dy/dx if x + sqrt(xy) + y = 1`


Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`


Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`


Choose the correct alternative.

If y = `sqrt("x" + 1/"x")`, then `"dy"/"dx" = ?`


Fill in the Blank

If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________


If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost


If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______


Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`


Find `("d"y)/("d"x)`, if y = `root(5)((3x^2 + 8x + 5)^4`


If y = `2/(sqrt(a^2 - b^2))tan^-1[sqrt((a - b)/(a + b))  tan  x/2], "then" (d^2y)/dx^2|_{x = pi/2}` = ______ 


Find `("d"y)/("d"x)`, if y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)`


If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.


The differential equation of (x - a)2 + y2 = a2 is ______ 


Find `dy/dx` if ,

`x= e^(3t) , y = e^(4t+5)`


lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:

`dy/dx = dy/(du) xx (du)/dx`

Hence, find `d/dx[log(x^5 + 4)]`.


If y = `root5((3x^2+8x+5)^4)`, find `dy/dx`


Find `dy/dx` if, `y = e^(5x^2 - 2x +4)`


Solve the following:

If `y =root(5)((3x^2 + 8x + 5)^4), "find" dy/(dx)`


If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`


Find `dy/dx` if, `y = e^(5x^2 - 2x+4)`


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/(dx)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×