हिंदी

Find the second order derivatives of the following : 2x5-4x3-2x2-9 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`

योग

उत्तर

Let y = `2x^5 - 4x^3 - (2)/x^2 - 9`

Then `"dy"/"dx" = "d"/"dx"(2x^5 - 4x^3 - 2/x^2 - 9)`

= `2"d"/"dx"(x^5) - 4"d"/"dx"(x^3) - 2"d"/"dx"(x^-2) - "d"/"dx"(9)`

= 2 x 5x4 – 4 x 3x2 – 2(–2)x–3 – 0
= 10x4 – 12x2 + 4x–3
and
`(d^2y)/(dx^2) = "d"/"dx"(10x^4 - 12x^2 + 4x^-3)`

= `10"d"/"dx"(x^4) - 12"d"/"dx"(x^2) + 4"d"/"dx"(x^-3)`

= 10 x 4x3 – 12 x 2x + 4(–3)x–4
= `40x^3 - 24x - (12)/x^4`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Differentiation - Exercise 1.5 [पृष्ठ ६०]

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If y = eax. cos bx, then prove that

`(d^2y)/(dx^2) - 2ady/dx + (a^2 + b^2)y` = 0


Solve : `"dy"/"dx" = 1 - "xy" + "y" - "x"`


If y = log (cos ex) then find `"dy"/"dx".`


Find `"dy"/"dx"` if `sqrt(x) + sqrt(y) = sqrt(a)`


Find `"dy"/"dx"` if `xsqrt(x) + ysqrt(y) = asqrt(a)`


Find `dy/dx if x + sqrt(xy) + y = 1`


Find `"dy"/"dx"`If x3 + x2y + xy2 + y3 = 81


Find `"dy"/"dx"` if cos (xy) = x + y


Find `"dy"/"dx"` if `e^(e^(x - y)) = x/y`


Find the second order derivatives of the following : xx 


Find `"dy"/"dx"` if, y = log(ax2 + bx + c) 


Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`


Find `"dy"/"dx"` if, y = `5^(("x" + log"x"))`


Choose the correct alternative.

If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =


The derivative of f(x) = ax, where a is constant is x.ax-1.


Solve the following:

If y = (6x3 - 3x2 - 9x)10, find `"dy"/"dx"` 


If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`


Find `"dy"/"dx"`, if y = xx.


Find `"dy"/"dx"`, if y = `2^("x"^"x")`.


If x = cos−1(t), y = `sqrt(1 - "t"^2)` then `("d"y)/("d"x)` = ______


If y = cos−1 [sin (4x)], find `("d"y)/("d"x)`


If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x


If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost


If y = `1/sqrt(3x^2 - 2x - 1)`, then `("d"y)/("d"x)` = ?


If y = x10, then `("d"y)/("d"x)` is ______


If y = x2, then `("d"^2y)/("d"x^2)` is ______


State whether the following statement is True or False:

If y = ex, then `("d"^2y)/("d"x^2)` = ex 


If y = `2/(sqrt(a^2 - b^2))tan^-1[sqrt((a - b)/(a + b))  tan  x/2], "then" (d^2y)/dx^2|_{x = pi/2}` = ______ 


If u = x2 + y2 and x = s + 3t, y = 2s - t, then `(d^2u)/(ds^2)` = ______ 


If f(x) = `(x - 2)/(x + 2)`, then f(α x) = ______ 


If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.


Derivative of ex sin x w.r.t. e-x cos x is ______.


If y = (sin x2)2,  then `("d"y)/("d"x)` is equal to ______.


`"d"/("d"x) [sin(1 - x^2)]^2` = ______.


If y = `(cos x)^((cosx)^((cosx))`, then `("d")/("d"x)` = ______.


y = cos (sin x)


y = sin (ax+ b)


y = `sec (tan sqrt(x))`


y = `2sqrt(cotx^2)`


If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.


Let f(x) = x | x | and g(x) = sin x

Statement I gof is differentiable at x = 0 and its derivative is continuous at that point.

Statement II gof is twice differentiable at x = 0.


If y = 2x2 + a2 + 22 then `dy/dx` = ______.


Find `"dy"/"dx"` if, `"y" = "e"^(5"x"^2 - 2"x" + 4)`


If `y = root5(3x^2 + 8x + 5)^4`, find `dy/dx`


Find `dy/dx` if, y = `e^(5 x^2 - 2x + 4)`


If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


If f(x) = `sqrt(7*g(x) - 3)`, g(3) = 4 and g'(3) = 5, find f'(3).


Find `dy/dx` if, y = `e^(5x^2-2x+4)`


Solve the following:

If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`


If y = `tan^-1((6x - 7)/(6 + 7x))`, then `dy/dx` = ______.


If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that

`dy/dx = dy/(du) xx (du)/dx`

Hence find `dy/dx` if y = log(x2 + 5)


Find `dy/dx` if, y = `e^(5x^2 -2x + 4)`


If y = `root5((3x^2 + 8x +5)^4)`, find `dy/dx`. 


Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


If y = `root5((3x^2+8x+5)^4)`, find `dy/dx`


Solve the following:

If `y =root(5)((3x^2 + 8x + 5)^4), "find" dy/(dx)`


Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`


Solve the following:

If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"` 


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`


Find `dy/dx` if, `y = e^(5x^2 - 2x+4)`


Solve the following.

If `y=root(5)((3x^2 + 8x + 5)^4)`, find `dy/dx`


Find `(dy) / (dx)` if, `y = e ^ (5x^2 - 2x + 4)`


If `y = root{5}{(3x^2 + 8x + 5)^4}, "find"  dy/dx`.


Find `dy/(dx)` if, y = `e^(5x^2 - 2x + 4)`


If y = `root{5}{(3x^2 + 8x + 5)^4)`, find `(dy)/(dx)`


Find `dy/dx` if, `y = e^(5x^2 - 2x +  4)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×