हिंदी

If y = eax. cos bx, then prove that d2ydx2-2adydx+(a2+b2)y = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

If y = eax. cos bx, then prove that

`(d^2y)/(dx^2) - 2ady/dx + (a^2 + b^2)y` = 0

योग

उत्तर

y = eax. cos bx

`dy/dx = ae^(ax).cosbx - be^(ax).sinbx  ...(i)`

`dy/dx = ay - be^(ax).sinbx`

`(d^2y)/(dx^2) = ady/dx - b(ae^(ax).sinbx + be^(ax).cosbx)`

`(d^2y)/(dx^2) = ady/dx - abe^(ax).sinbx - b^2e^(ax).cosbx`

`(d^2y)/(dx^2) = ady/dx - a(ay - dy/dx) - b^2y `   ...[Substituting beax sin bx from (i)]

`(d^2y)/(dx^2) = ady/dx - a^2y + ady/dx - b^2y`

`therefore (d^2y)/(dx^2) - 2ady/dx + (a^2 + b^2)y` = 0

Hence Proved

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March) Panchkula Set 1

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

if `y = tan^2(log x^3)`, find `(dy)/(dx)`


Solve : `"dy"/"dx" = 1 - "xy" + "y" - "x"`


Find `dy/dx if x + sqrt(xy) + y = 1`


Find `"dy"/"dx"` if cos (xy) = x + y


Find `"dy"/"dx"` if, y = log(10x4 + 5x3 - 3x2 + 2)


Choose the correct alternative.

If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =


`d/dx(10^x) = x*10^(x - 1)`


Solve the following:

If y = (6x3 - 3x2 - 9x)10, find `"dy"/"dx"` 


If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25 + 30x  – x2.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`


Find `"dy"/"dx"`, if y = `2^("x"^"x")`.


Differentiate `"e"^("4x" + 5)` with respect to 104x.


If y = sec (tan−1x) then `("d"y)/("d"x)` at x = 1 is ______.


If f'(4) = 5, f(4) = 3, g'(6) = 7 and R(x) = g[3 + f(x)] then R'(4) = ______


If sin−1(x3 + y3) = a then `("d"y)/("d"x)` = ______


If y = cos−1 [sin (4x)], find `("d"y)/("d"x)`


If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x


If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost


If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______


State whether the following statement is True or False:

If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a


State whether the following statement is True or False:

If y = ex, then `("d"^2y)/("d"x^2)` = ex 


Find `("d"y)/("d"x)`, if y = `root(5)((3x^2 + 8x + 5)^4`


If f(x) = `(x - 2)/(x + 2)`, then f(α x) = ______ 


If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.


Derivative of ex sin x w.r.t. e-x cos x is ______.


If y = (sin x2)2,  then `("d"y)/("d"x)` is equal to ______.


Differentiate `sqrt(tansqrt(x))` w.r.t. x


If x = a sec3θ and y = a tan3θ, find `("d"y)/("d"x)` at θ = `pi/3`


If f(x) = |cos x|, find f'`((3pi)/4)`


Differentiate the function from over no 15 to 20 sin (x2 + 5)


y = sin (ax+ b)


If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.


Let f(x) = log x + x3 and let g(x) be the inverse of f(x), then |64g"(1)| is equal to ______.


Let x(t) = `2sqrt(2) cost sqrt(sin2t)` and y(t) = `2sqrt(2) sint sqrt(sin2t), t ∈ (0, π/2)`. Then `(1 + (dy/dx)^2)/((d^2y)/(dx^2)` at t = `π/4` is equal to ______.


If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.


If y = 2x2 + a2 + 22 then `dy/dx` = ______.


If `d/dx` [f(x)] = ax+ b and f(0) = 0, then f(x) is equal to ______.


Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`


If `y = root5(3x^2 + 8x + 5)^4`, find `dy/dx`


Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`


Find `dy/dx` if, y = `e^(5 x^2 - 2x + 4)`


If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


Find `dy/dx` if ,

`x= e^(3t) , y = e^(4t+5)`


lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:

`dy/dx = dy/(du) xx (du)/dx`

Hence, find `d/dx[log(x^5 + 4)]`.


If f(x) = `sqrt(7*g(x) - 3)`, g(3) = 4 and g'(3) = 5, find f'(3).


If y = `log((x + sqrt(x^2 + a^2))/(sqrt(x^2 + a^2) - x))`, find `dy/dx`.


If y = `root5((3x^2+8x+5)^4)`, find `dy/dx`


Find `dy/dx` if, `y = e^(5x^2 - 2x +4)`


Find `dy/dx` if, `y = e^(5x^2 - 2x+4)`


Find `dy/(dx)` if, y = `e^(5x^2 - 2x + 4)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×