Advertisements
Advertisements
प्रश्न
If `d/dx` [f(x)] = ax+ b and f(0) = 0, then f(x) is equal to ______.
विकल्प
a + b
`(ax^2)/2 + bx`
`(ax^2)/2 + bx + c`
b
उत्तर
If `d/dx` [f(x)] = ax+ b and f(0) = 0, then f(x) is equal to `underlinebb((ax^2)/2 + bx)`.
Explanation:
Given
`d/dx [f(x)]` = ax + b
By integrating both sides, we get
f(x) = `int (ax + b)dx`
`\implies` f(x) = `(ax^2)/2 + bx + c`
Now, f(0) = 0
∴ f(0) = 0 + 0 + c
`\implies` c = 0
Then, f(x) = `(ax^2)/2 + bx`.
संबंधित प्रश्न
Find the second order derivatives of the following : e2x . tan x
Find `"dy"/"dx"` if, y = `root(3)("a"^2 + "x"^2)`
Find `"dy"/"dx"` if, y = `"a"^((1 + log "x"))`
If y = 2x2 + 22 + a2, then `"dy"/"dx" = ?`
Fill in the Blank
If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`
If y = sec (tan−1x) then `("d"y)/("d"x)` at x = 1 is ______.
Choose the correct alternative:
If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?
Choose the correct alternative:
If y = `x^(sqrt(x))`, then `("d"y)/("d"x)` = ?
If y = x2, then `("d"^2y)/("d"x^2)` is ______
State whether the following statement is True or False:
If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a
Find `("d"y)/("d"x)`, if y = (6x3 – 3x2 – 9x)10
If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.
If y = `(cos x)^((cosx)^((cosx))`, then `("d")/("d"x)` = ______.
y = cos (sin x)
If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.
Let x(t) = `2sqrt(2) cost sqrt(sin2t)` and y(t) = `2sqrt(2) sint sqrt(sin2t), t ∈ (0, π/2)`. Then `(1 + (dy/dx)^2)/((d^2y)/(dx^2)` at t = `π/4` is equal to ______.
Let f(x) = x | x | and g(x) = sin x
Statement I gof is differentiable at x = 0 and its derivative is continuous at that point.
Statement II gof is twice differentiable at x = 0.
Find `dy/dx` if, y = `e^(5x^2-2x+4)`
Solve the following:
If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`
If y = `log((x + sqrt(x^2 + a^2))/(sqrt(x^2 + a^2) - x))`, find `dy/dx`.
Find `dy/dx` if, y = `e^(5x^2 -2x + 4)`
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find `dy/dx` if, y = `e^(5x^2-2x+4)`
Solve the following:
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`
Find `dy/dx` if, `y = e^(5x^2 - 2x + 4)`.
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/(dx)`.