Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"` if, y = `"a"^((1 + log "x"))`
उत्तर
y = `"a"^((1 + log "x"))`
Differentiating both sides w.r.t.x, we get
`"dy"/"dx" = "d"/"dx" "a"^((1 + log "x"))`
`= "a"^((1 + log "x")) * log "a" * "d"/"dx" (1 + log "x")`
`= "a"^((1 + log "x")) * log "a" * (0 + 1/"x")`
∴ `"dy"/"dx" = "a"^((1 + log "x")) * log "a" * 1/"x"`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"` if `xsqrt(x) + ysqrt(y) = asqrt(a)`
Find `dy/dx if x + sqrt(xy) + y = 1`
Find `"dy"/"dx"` if `e^(e^(x - y)) = x/y`
Find the second order derivatives of the following : e2x . tan x
Find `"dy"/"dx"` if, y = log(10x4 + 5x3 - 3x2 + 2)
Find `"dy"/"dx"` if, y = `5^(("x" + log"x"))`
If y = 2x2 + 22 + a2, then `"dy"/"dx" = ?`
Solve the following:
If y = (6x3 - 3x2 - 9x)10, find `"dy"/"dx"`
Choose the correct alternative:
If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?
If y = (5x3 – 4x2 – 8x)9, then `("d"y)/("d"x)` is ______
If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______
State whether the following statement is True or False:
If y = ex, then `("d"^2y)/("d"x^2)` = ex
If y = `2/(sqrt(a^2 - b^2))tan^-1[sqrt((a - b)/(a + b)) tan x/2], "then" (d^2y)/dx^2|_{x = pi/2}` = ______
If f(x) = `(x - 2)/(x + 2)`, then f(α x) = ______
If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
Differentiate the function from over no 15 to 20 sin (x2 + 5)
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
If y = `sqrt((1 - x)/(1 + x))`, then `(1 - x^2) dy/dx + y` = ______.
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`