Advertisements
Advertisements
प्रश्न
If y = 2x2 + 22 + a2, then `"dy"/"dx" = ?`
विकल्प
x
4x
2x
-2x
4x + 2a
4x + 4
उत्तर
4x
Explanation:
y = 2x2 + 22 + a2
Differentiating both sides w.r.t.x, we get
`"dy"/"dx"` = 2(2x) + 0 + 0 = 4x
संबंधित प्रश्न
Find `"dy"/"dx"` if `sqrt(x) + sqrt(y) = sqrt(a)`
Find `dy/dx if x + sqrt(xy) + y = 1`
Find `"dy"/"dx"`If x3 + x2y + xy2 + y3 = 81
Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`
Find `"dy"/"dx"` if xey + yex = 1
Find `"dy"/"dx"` if cos (xy) = x + y
Find `"dy"/"dx"` if `e^(e^(x - y)) = x/y`
Find `"dy"/"dx"` if, y = log(10x4 + 5x3 - 3x2 + 2)
Fill in the Blank
If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.
If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost
Choose the correct alternative:
If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?
State whether the following statement is True or False:
If y = ex, then `("d"y)/("d"x)` = ex
Find `("d"y)/("d"x)`, if y = `root(5)((3x^2 + 8x + 5)^4`
Derivative of ex sin x w.r.t. e-x cos x is ______.
If y = `(cos x)^((cosx)^((cosx))`, then `("d")/("d"x)` = ______.
y = sin (ax+ b)
Let f(x) = log x + x3 and let g(x) be the inverse of f(x), then |64g"(1)| is equal to ______.
If f(x) = `{{:(x^3 + 1",", x < 0),(x^2 + 1",", x ≥ 0):}`, g(x) = `{{:((x - 1)^(1//3)",", x < 1),((x - 1)^(1//2)",", x ≥ 1):}`, then (gof) (x) is equal to ______.
If `d/dx` [f(x)] = ax+ b and f(0) = 0, then f(x) is equal to ______.
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
Solve the following:
If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`
If y = `log((x + sqrt(x^2 + a^2))/(sqrt(x^2 + a^2) - x))`, find `dy/dx`.
If y = `tan^-1((6x - 7)/(6 + 7x))`, then `dy/dx` = ______.
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
Solve the following:
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`
If `y = (x + sqrt(a^2 + x^2))^m`, prove that `(a^2 + x^2)(d^2y)/(dx^2) + xdy/dx - m^2y = 0`