हिंदी

Differentiate tanx w.r.t. x - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate `sqrt(tansqrt(x))` w.r.t. x

योग

उत्तर

Let y = `sqrt(tansqrt(x)`.

Using chain rule, we have

`("d"y)/("d"x) = 1/(2sqrt(tansqrt(x))) * "d"/("d"x) (tan sqrt(x))`

= `1/(2sqrt(tansqrt(x))) * sec^2 sqrt(x)  "d"/("d"x) (sqrt(x))`

= `1/(2sqrt(tansqrt(x))) (sec^2 sqrt(x)) (1/(2sqrt(x)))`

= `(sec^2 sqrt(x))/(4sqrt(x) sqrt(tansqrt(x))`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity And Differentiability - Solved Examples [पृष्ठ ९३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 5 Continuity And Differentiability
Solved Examples | Q 7 | पृष्ठ ९३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If y = log (cos ex) then find `"dy"/"dx".`


Find `"dy"/"dx"` if cos (xy) = x + y


Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`


Find the second order derivatives of the following : e2x . tan x


Find `"dy"/"dx"` if, y = log(10x4 + 5x3 - 3x2 + 2)


Find `"dy"/"dx"` if, y = `5^(("x" + log"x"))`


If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.


Find `"dy"/"dx"`, if y = xx.


If x = cos−1(t), y = `sqrt(1 - "t"^2)` then `("d"y)/("d"x)` = ______


If u = x2 + y2 and x = s + 3t, y = 2s - t, then `(d^2u)/(ds^2)` = ______ 


Find `("d"y)/("d"x)`, if y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)`


If y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` and 0 < x < 1, then find `("d"y)/(dx)`


If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)` 


If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.


Let x(t) = `2sqrt(2) cost sqrt(sin2t)` and y(t) = `2sqrt(2) sint sqrt(sin2t), t ∈ (0, π/2)`. Then `(1 + (dy/dx)^2)/((d^2y)/(dx^2)` at t = `π/4` is equal to ______.


If `d/dx` [f(x)] = ax+ b and f(0) = 0, then f(x) is equal to ______.


If `y = root5(3x^2 + 8x + 5)^4`, find `dy/dx`


The differential equation of (x - a)2 + y2 = a2 is ______ 


If f(x) = `sqrt(7*g(x) - 3)`, g(3) = 4 and g'(3) = 5, find f'(3).


If y = `log((x + sqrt(x^2 + a^2))/(sqrt(x^2 + a^2) - x))`, find `dy/dx`.


If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that

`dy/dx = dy/(du) xx (du)/dx`

Hence find `dy/dx` if y = log(x2 + 5)


If y = `root5((3x^2 + 8x +5)^4)`, find `dy/dx`. 


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


Find `dy/dx` if, `y = e^(5x^2 - 2x +4)`


If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`


Solve the following:

If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"` 


Solve the following.

If `y=root(5)((3x^2 + 8x + 5)^4)`, find `dy/dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×