Advertisements
Advertisements
प्रश्न
Solve the following differential equation:
x2 dy + (xy + y2) dx = 0, when x = 1 and y = 1
उत्तर
x2 dy + (xy + y2) dx = 0
⇒ x2 dy = -(xy + y2 ) dx
⇒ `(dy)/(dx) = - ((xy + y^2))/x^2`
Let y = vx
`(dy)/(dx) = v + x (dv)/(dx)`
`v + x (dv)/(dx) = - ((vx^2 + v^2 x^2))/x^2`
`v + x (dv)/(dx) = - (v + v^2)`
` x (dv)/(dx) = - 2v - v^2`
⇒ `(dv)/(v^2 + 2v) = - (dx)/x`
⇒ `(dv)/(v^2 + 2v) + (dx)/x = 0`
⇒ ` int_ (dv)/((v + 1)^2 - (1)^2) + int_ (dx)/x = 0`
⇒ `(1)/(2) log |[ v+ 1 -1]/[v + 1 + 1]| + log x = c`
⇒ ` log |[ v]/[ v + 2]| + 2 log x = 2c`
⇒ ` log |[ vx^2]/[ v + 2]| = 2c`
⇒ ` |[ vx^2]/[ v + 2]| = e^2c`
⇒ ` ( vx^2)/( v + 2) = ± e^2""^c = "A" ("say")`
⇒ `(yx)/(y/2 + 2) = "A"`
⇒ `x^2y = "A" (y + 2x)`
Now, when y = 1, x = 1
⇒ 1 = A (3)
⇒ A = `(1)/(3)`
∴ `y + 2x = 3x^2y`
APPEARS IN
संबंधित प्रश्न
Solve : `"dy"/"dx" = 1 - "xy" + "y" - "x"`
Find `"dy"/"dx"`If x3 + x2y + xy2 + y3 = 81
Find `"dy"/"dx"` if cos (xy) = x + y
Find `"dy"/"dx"` if `e^(e^(x - y)) = x/y`
Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`
Find the second order derivatives of the following : xx
Find `"dy"/"dx"` if, y = `sqrt("x" + 1/"x")`
Fill in the Blank
If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________
`d/dx(10^x) = x*10^(x - 1)`
Differentiate `"e"^("4x" + 5)` with respect to 104x.
If y = sec (tan−1x) then `("d"y)/("d"x)` at x = 1 is ______.
If f'(4) = 5, f(4) = 3, g'(6) = 7 and R(x) = g[3 + f(x)] then R'(4) = ______
If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x
If x = a sec3θ and y = a tan3θ, find `("d"y)/("d"x)` at θ = `pi/3`
If f(x) = |cos x – sinx|, find `"f'"(pi/6)`
If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.
Let x(t) = `2sqrt(2) cost sqrt(sin2t)` and y(t) = `2sqrt(2) sint sqrt(sin2t), t ∈ (0, π/2)`. Then `(1 + (dy/dx)^2)/((d^2y)/(dx^2)` at t = `π/4` is equal to ______.
If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
Solve the following:
If y = `root5 ((3x^2 + 8x + 5)^4 ,) "find" "dy"/ "dx"`
Find the rate of change of demand (x) of acommodity with respect to its price (y) if
`y = 12 + 10x + 25x^2`
Solve the following:
If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`
If y = `log((x + sqrt(x^2 + a^2))/(sqrt(x^2 + a^2) - x))`, find `dy/dx`.
If y = `root5((3x^2+8x+5)^4)`, find `dy/dx`
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`
Find `dy/dx` if, `y = e^(5x^2 - 2x+4)`
Find `(dy) / (dx)` if, `y = e ^ (5x^2 - 2x + 4)`